Quantitative arithmetic of diagonal degree 2 K3 surfaces

被引:0
|
作者
Damián Gvirtz
Daniel Loughran
Masahiro Nakahara
机构
[1] Leibniz Universität Hannover,Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik
[2] University of Bath,Department of Mathematical Sciences
来源
Mathematische Annalen | 2022年 / 384卷
关键词
14G05; 14F22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of rational points for the family of K3 surfaces over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document} given by w2=A1x16+A2x26+A3x36.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w^2 = A_1x_1^6 + A_2x_2^6 + A_3x_3^6. \end{aligned}$$\end{document}When the coefficients are ordered by height, we show that the Brauer group is almost always trivial, and find the exact order of magnitude of surfaces for which there is a Brauer–Manin obstruction to the Hasse principle. Our results show definitively that K3 surfaces can have a Brauer–Manin obstruction to the Hasse principle that is only explained by odd order torsion.
引用
收藏
页码:1 / 75
页数:74
相关论文
共 50 条
  • [21] Elliptic fibrations on K3 surfaces and Salem numbers of maximal degree
    Yu, Xun
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (03) : 1151 - 1163
  • [22] DYNAMICS ON SUPERSINGULAR K3 SURFACES AND AUTOMORPHISMS OF SALEM DEGREE 22
    Brandhorst, Simon
    NAGOYA MATHEMATICAL JOURNAL, 2017, 227 : 1 - 15
  • [23] Automorphisms of elliptic K3 surfaces and Salem numbers of maximal degree
    Esnault, Helene
    Oguiso, Keiji
    Yu, Xun
    ALGEBRAIC GEOMETRY, 2016, 3 (04): : 496 - 507
  • [24] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [25] On the decomposition of the small diagonal of a K3 surface
    Bazhov, Ivan
    ADVANCES IN GEOMETRY, 2019, 19 (03) : 353 - 358
  • [26] The Chow ring of the moduli space of degree 2 quasi-polarized K3 surfaces
    Canning, Samir
    Oprea, Dragos
    Pandharipande, Rahul
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024,
  • [27] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [28] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [29] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [30] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160