Privacy leakage in multi-relational databases: a semi-supervised learning perspective

被引:0
|
作者
Hui Xiong
Michael Steinbach
Vipin Kumar
机构
[1] Rutgers University,MSIS Department
[2] University of Minnesota,Department of Computer Science and Engineering
来源
The VLDB Journal | 2006年 / 15卷
关键词
Class Label; Label Object; High Security Level; Database Security; Very Large Data Base;
D O I
暂无
中图分类号
学科分类号
摘要
In multi-relational databases, a view, which is a context- and content-dependent subset of one or more tables (or other views), is often used to preserve privacy by hiding sensitive information. However, recent developments in data mining present a new challenge for database security even when traditional database security techniques, such as database access control, are employed. This paper presents a data mining framework using semi-supervised learning that demonstrates the potential for privacy leakage in multi-relational databases. Many different types of semi-supervised learning techniques, such as the K-nearest neighbor (KNN) method, can be used to demonstrate privacy leakage. However, we also introduce a new approach to semi-supervised learning, hyperclique pattern-based semi-supervised learning (HPSL), which differs from traditional semi-supervised learning approaches in that it considers the similarity among groups of objects instead of only pairs of objects. Our experimental results show that both the KNN and HPSL methods have the ability to compromise database security, although the HPSL is better at this privacy violation (has higher prediction accuracy) than the KNN method. Finally, we provide a principle for avoiding privacy leakage in multi-relational databases via semi-supervised learning and illustrate this principle with a simple preventive technique whose effectiveness is demonstrated by experiments.
引用
收藏
页码:388 / 402
页数:14
相关论文
共 50 条
  • [41] Semi-supervised learning by disagreement
    Zhou, Zhi-Hua
    Li, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 415 - 439
  • [42] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [43] Semi-supervised Sequence Learning
    Dai, Andrew M.
    Le, Quoc V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [44] Semi-Supervised Incremental Learning
    Bouchachia, Abdelhamid
    Prossegger, Markus
    Duman, Hakan
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [45] Semi-supervised learning by disagreement
    Zhi-Hua Zhou
    Ming Li
    Knowledge and Information Systems, 2010, 24 : 415 - 439
  • [46] Multi-Augmentation-Based Contrastive Learning for Semi-Supervised Learning
    Wang, Jie
    Yang, Jie
    He, Jiafan
    Peng, Dongliang
    ALGORITHMS, 2024, 17 (03)
  • [47] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [48] Semi-Supervised Learning by Disagreement
    Zhou, Zhi-Hua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 93 - 93
  • [49] Reliable Semi-supervised Learning
    Shao, Junming
    Huang, Chen
    Yang, Qinli
    Luo, Guangchun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1197 - 1202
  • [50] Semi-supervised Learning with Transfer Learning
    Zhou, Huiwei
    Zhang, Yan
    Huang, Degen
    Li, Lishuang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, 2013, 8208 : 109 - 119