Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer

被引:0
|
作者
Jing Geng
Sihan Ji
机构
[1] Anhui Jianzhu University,Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering
[2] Anhui Jianzhu University,Anhui Province Key Laboratory of Advanced Building Materials
[3] Hefei University,School of Energy Materials and Chemical Engineering
来源
Nano Research | 2024年 / 17卷
关键词
Cu; O/Cu(OH); heterostructures; electron transfer; ammonia synthesis; electrocatalysts; nitrate;
D O I
暂无
中图分类号
学科分类号
摘要
Electrocatalytic nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 µg·h-1·mgcat-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\mu g}} \cdot {{\rm{h}}^{ - 1}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}}}^{ - 1}$$\end{document}, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3.
引用
收藏
页码:4898 / 4907
页数:9
相关论文
共 50 条
  • [41] Effect and mechanism of PEDOT-Cu/Cu2O on the electrochemical reduction of nitrate with carbon electrodes
    Jia, Yuanming
    Liu, Jiadong
    Gao, Bo
    Xiao, Sanxiong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [42] Effect of OH− on morphology of Cu2O particles prepared through reduction of Cu(II) by glucose
    Yue-jun Wang
    Kang-gen Zhou
    Journal of Central South University, 2012, 19 : 2125 - 2129
  • [43] Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion
    Aguirre, Matias E.
    Zhou, Ruixin
    Eugene, Alexis J.
    Guzman, Marcelo I.
    Grela, Maria A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 : 485 - 493
  • [44] Efficient electrocatalytic reduction of nitrate to ammonia using Cu-CeO2 solid solution
    Dai, Hongliang
    Liu, Lijing
    Zhao, Huaiquan
    Zhou, Pengjie
    Ying, Yulong
    Yin, Mengyang
    Wang, Xiaohong
    Fan, Weiqiang
    Bai, Hongye
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 73 : 257 - 264
  • [45] Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids
    Meng Zhang
    Xianneng Tu
    Jingyang Wang
    Tuo Fang
    Yanli Wang
    Xiaodong Xu
    Milin Zhang
    Yitung Chen
    Chemical Research in Chinese Universities, 2016, 32 : 530 - 533
  • [46] Hydrothermal Syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu Microcrystals Using Ionic Liquids
    Zhang Meng
    Tu Xianneng
    Wang Jingyang
    Fang Tuo
    Wang Yanli
    Xu Xiaodong
    Zhang Milin
    Chen Yitung
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2016, 32 (04) : 530 - 533
  • [47] In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia
    Muyun Zheng
    Yuchi Wan
    Leping Yang
    Shen Ao
    Wangyang Fu
    Zhengjun Zhang
    ZhengHong Huang
    Tao Ling
    Feiyu Kang
    Ruitao Lv
    Journal of Energy Chemistry, 2025, 100 (01) : 106 - 113
  • [48] CUO AND CU2O REDUCTION WITH CARBON
    LAKOV, LP
    MEHANDJIEV, DR
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1983, 36 (04): : 441 - 444
  • [49] Insights into the Origin of Activity Enhancement via Tuning Electronic Structure of Cu2O towards Electrocatalytic Ammonia Synthesis
    Kou, Meimei
    Yuan, Ying
    Zhao, Ruili
    Wang, Youkui
    Zhao, Jiamin
    Yuan, Qing
    Zhao, Jinsheng
    MOLECULES, 2024, 29 (10):
  • [50] In-situ decoration of unsaturated Cu sites on Cu2O photocathode for boosting nitrogen reduction reaction
    Liu, Ying
    Bai, Hongye
    Zhang, Qianxiao
    Bai, Yajie
    Pang, Xuliang
    Wang, Fagen
    Yang, Yingchen
    Ding, Jinrui
    Fan, Weiqiang
    Shi, Weidong
    CHEMICAL ENGINEERING JOURNAL, 2021, 413