SUM-optimal histograms for approximate query processing

被引:0
|
作者
Meifan Zhang
Hongzhi Wang
Jianzhong Li
Hong Gao
机构
[1] Harbin Institute of Technology,Department of Computer Science and Technology
来源
关键词
Approximate query processing; Histogram; Big data;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the problem of the SUM query approximation with histograms. We define a new kind of histogram called the SUM-optimal histogram which can provide better estimation result for the SUM queries than the traditional equi-depth and V-optimal histograms. We propose three methods for the histogram construction. The first one is a dynamic programming method, and the other two are approximate methods. We use a greedy strategy to insert separators into a histogram and use the stochastic gradient descent method to improve the accuracy of separators. The experimental results indicate that our method can provide better estimations for the SUM queries than the equi-depth and V-optimal histograms.
引用
收藏
页码:3155 / 3180
页数:25
相关论文
共 50 条
  • [21] EntropyDB: a probabilistic approach to approximate query processing
    Laurel Orr
    Magdalena Balazinska
    Dan Suciu
    The VLDB Journal, 2020, 29 : 539 - 567
  • [22] Scalable Approximate Query Processing with the DBO Engine
    Jermaine, Chris
    Arumugam, Subramanian
    Pol, Abhijit
    Dobra, Alin
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2008, 33 (04):
  • [23] Approximate Query Processing for Interactive Data Science
    Kraska, Tim
    SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2017, : 525 - 525
  • [24] Optimized stratified sampling for approximate query processing
    Chaudhuri, Surajit
    Das, Gautam
    Narasayya, Vivek
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2007, 32 (02):
  • [25] EntropyDB: a probabilistic approach to approximate query processing
    Orr, Laurel
    Balazinska, Magdalena
    Suciu, Dan
    VLDB JOURNAL, 2020, 29 (01): : 539 - 567
  • [26] Approximate range–sum query answering on data cubes with probabilistic guarantees
    Alfredo Cuzzocrea
    Wei Wang
    Journal of Intelligent Information Systems, 2007, 28 : 161 - 197
  • [27] Range sum query processing in parallel data warehouses
    Li, JZ
    Gao, H
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT'2003, PROCEEDINGS, 2003, : 877 - 881
  • [28] DeepSPACE: Approximate Geospatial Query Processing with Deep Learning
    Vorona, Dimitri
    Kipf, Andreas
    Neumann, Thomas
    Kemper, Alfons
    27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 500 - 503
  • [29] Exploiting Embedded Synopsis for Exact and Approximate Query Processing
    Yuasa, Hiroki
    Goda, Kazuo
    Kitsuregawa, Masaru
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT II, 2022, 13427 : 235 - 240
  • [30] Approximate range query processing in spatial network databases
    Haidar AL-Khalidi
    Zainab Abbas
    Maytham Safar
    Multimedia Systems, 2013, 19 : 151 - 161