Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts ModelsIV. Chromatic Polynomial with Cyclic Boundary Conditions

被引:0
|
作者
Jesper Lykke Jacobsen
Jesús Salas
机构
[1] Université Paris-Sud,Laboratoire de Physique Théorique et Modéles Statistiques
[2] Universidad Carlos III de Madrid,Grupo de Modelización, Simulación Numérica y Matemática Industrial
来源
关键词
Chromatic polynomial; antiferromagnetic Potts model; triangular lattice; square lattice; transfer matrix; Fortuin–Kasteleyn representation; Beraha numbers; conformal field theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the chromatic polynomial PG(q) for m× n square- and triangular-lattice strips of widths 2≤ m ≤ 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin–Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n→∞. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.
引用
收藏
页码:705 / 760
页数:55
相关论文
共 15 条