Transfer matrices and partition-function zeros for antiferromagnetic Potts models. III. Triangular-lattice chromatic polynomial

被引:36
|
作者
Jacobsen, JL
Salas, J
Sokal, AD
机构
[1] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[2] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[3] NYU, Dept Phys, New York, NY 10003 USA
关键词
chromatic polynomial; chromatic root; antiferromagnetic Potts model; triangular lattice; transfer matrix; Fortuin-Kasteleyn representation; Beraha-Kahane-Weiss theorem; Beraha numbers;
D O I
10.1023/A:1024611424456
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the chromatic polynomial P-G(q) for m x n triangular-lattice strips of widths mless than or equal to12(P), 9(F) (with periodic or free transverse boundary conditions, respectively) and arbitrary lengths n (with free longitudinal boundary conditions). The chromatic polynomial gives the zero-temperature limit of the partition function for the q-state Potts antiferromagnet. We compute the transfer matrix for such strips in the Fortuin-Kasteleyn representation and obtain the corresponding accumulation sets of chromatic zeros in the complex q-plane in the limit n-->infinity. We recompute the limiting curve obtained by Baxter in the thermodynamic limit m, n-->infinity. and find new interesting features with possible physical consequences. Finally, we analyze the isolated limiting points and their relation with the Beraha numbers.
引用
收藏
页码:921 / 1017
页数:97
相关论文
共 19 条