Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems

被引:0
|
作者
R. Díaz Millán
O. P. Ferreira
J. Ugon
机构
[1] Deakin University,School of Information Technology
[2] Universidade Federal de Goiás,IME
来源
关键词
Convex feasibility problem; Douglas–Rachford algorithm; Frank–Wolfe algorithm; Conditional gradient method; Inexact projections; 65K05; 90C30; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm, the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm.
引用
收藏
页码:621 / 636
页数:15
相关论文
共 50 条
  • [1] Approximate Douglas-Rachford algorithm for two-sets convex feasibility problems
    Millan, R. Diaz
    Ferreira, O. P.
    Ugon, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (03) : 621 - 636
  • [2] The Douglas–Rachford algorithm for convex and nonconvex feasibility problems
    Francisco J. Aragón Artacho
    Rubén Campoy
    Matthew K. Tam
    [J]. Mathematical Methods of Operations Research, 2020, 91 : 201 - 240
  • [3] The Douglas-Rachford algorithm for convex and nonconvex feasibility problems
    Aragon Artacho, Francisco J.
    Campoy, Ruben
    Tam, Matthew K.
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (02) : 201 - 240
  • [4] Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems
    Minh N. Dao
    Hung M. Phan
    [J]. Journal of Global Optimization, 2018, 72 : 443 - 474
  • [5] ON THE FINITE CONVERGENCE OF THE DOUGLAS-RACHFORD ALGORITHM FOR SOLVING (NOT NECESSARILY CONVEX) FEASIBILITY PROBLEMS IN EUCLIDEAN SPACES
    Bauschke, Heinz H.
    Dao, Minh N.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 507 - 537
  • [6] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [7] On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces
    Heinz H. Bauschke
    Minh N. Dao
    Dominikus Noll
    Hung M. Phan
    [J]. Journal of Global Optimization, 2016, 65 : 329 - 349
  • [8] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [9] Unrestricted Douglas-Rachford algorithms for solving convex feasibility problems in Hilbert space
    Barshad, Kay
    Gibali, Aviv
    Reich, Simeon
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (04): : 655 - 667
  • [10] On Slater's condition and finite convergence of the Douglas-Rachford algorithm for solving convex feasibility problems in Euclidean spaces
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (02) : 329 - 349