ON THE FINITE CONVERGENCE OF THE DOUGLAS-RACHFORD ALGORITHM FOR SOLVING (NOT NECESSARILY CONVEX) FEASIBILITY PROBLEMS IN EUCLIDEAN SPACES

被引:16
|
作者
Bauschke, Heinz H. [1 ]
Dao, Minh N. [2 ,3 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Univ Newcastle, CARMA, Callaghan, NSW 2308, Australia
[3] Hanoi Natl Univ Educ, Dept Math & Informat, 136 Xuan Thuy, Hanoi, Vietnam
基金
加拿大自然科学与工程研究理事会;
关键词
averaged alternating reflections; Douglas-Rachford algorithm; epigraph; feasibility problem; finite convergence; global convergence; halfspace; polyhedron; projector; reflector; ALTERNATING PROJECTIONS; LINEAR CONVERGENCE;
D O I
10.1137/16M1071079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving feasibility problems is a central task in mathematics and the applied sciences. One particularly successful method is the Douglas-Rachford algorithm. In this paper, we provide many new conditions sufficient for finite convergence. Numerous examples illustrate our results.
引用
收藏
页码:507 / 537
页数:31
相关论文
共 50 条
  • [1] On Slater's condition and finite convergence of the Douglas-Rachford algorithm for solving convex feasibility problems in Euclidean spaces
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (02) : 329 - 349
  • [2] On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces
    Heinz H. Bauschke
    Minh N. Dao
    Dominikus Noll
    Hung M. Phan
    [J]. Journal of Global Optimization, 2016, 65 : 329 - 349
  • [3] The Douglas-Rachford algorithm for convex and nonconvex feasibility problems
    Aragon Artacho, Francisco J.
    Campoy, Ruben
    Tam, Matthew K.
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (02) : 201 - 240
  • [4] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [5] Unrestricted Douglas-Rachford algorithms for solving convex feasibility problems in Hilbert space
    Barshad, Kay
    Gibali, Aviv
    Reich, Simeon
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (04): : 655 - 667
  • [6] Approximate Douglas-Rachford algorithm for two-sets convex feasibility problems
    Millan, R. Diaz
    Ferreira, O. P.
    Ugon, J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (03) : 621 - 636
  • [7] Solving Graph Coloring Problems with the Douglas-Rachford Algorithm
    Francisco J. Aragón Artacho
    Rubén Campoy
    [J]. Set-Valued and Variational Analysis, 2018, 26 : 277 - 304
  • [8] Solving Graph Coloring Problems with the Douglas-Rachford Algorithm
    Aragon Artacho, Francisco J.
    Campoy, Ruben
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (02) : 277 - 304
  • [9] On the finite termination of the Douglas-Rachford method for the convex feasibility problem
    Matsushita, Shin-ya
    Xu, Li
    [J]. OPTIMIZATION, 2016, 65 (11) : 2037 - 2047
  • [10] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600