Nondefinability results with entire functions of finite order in polynomially bounded o-minimal structures

被引:0
|
作者
Hassan Sfouli
机构
[1] Ibn Tofail University,Departement of Mathematics, Faculty of Sciences
来源
Archive for Mathematical Logic | 2024年 / 63卷
关键词
Polynomially bounded o-minimal structure; Entire function; Nondefinability; 03C64; 03C40; 30D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} be a polynomially bounded o-minimal expansion of the real field. Let f(z) be a transcendental entire function of finite order ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and type σ∈[0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in [0,\infty ]$$\end{document}. The main purpose of this paper is to show that if (ρ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho <1$$\end{document}) or (ρ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =1$$\end{document} and σ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =0$$\end{document}), the restriction of f(z) to the real axis is not definable in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document}. Furthermore, we give a generalization of this result for any ρ∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in [0,\infty )$$\end{document}.
引用
收藏
页码:491 / 498
页数:7
相关论文
共 50 条
  • [31] Fundamental group in o-minimal structures with definable Skolem functions
    Dinis, Bruno
    Edmundo, Mario J.
    Mamino, Marcello
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (08)
  • [32] FIBERWISE PROPERTIES OF DEFINABLE SETS AND FUNCTIONS IN O-MINIMAL STRUCTURES
    SPEISSEGGER, P
    MANUSCRIPTA MATHEMATICA, 1995, 86 (03) : 283 - 291
  • [33] Pairs of O-minimal structures
    Baisalov, Y
    Poizat, B
    JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (02) : 570 - 578
  • [34] Locally o-minimal structures
    Kawakami, Tomohiro
    Takeuchi, Kota
    Tanaka, Hiroshi
    Tsuboi, Akito
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (03) : 783 - 797
  • [35] Embedded o-minimal structures
    Hasson, Assaf
    Onshuus, Alf
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 : 64 - 74
  • [36] LINEAR O-MINIMAL STRUCTURES
    LOVEYS, J
    PETERZIL, Y
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) : 1 - 30
  • [37] Fusing o-minimal structures
    Wilkie, AJ
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (01) : 271 - 281
  • [38] Convergence results for function spaces over o-minimal structures
    Thomas, Margaret E. M.
    JOURNAL OF LOGIC AND ANALYSIS, 2012, 4
  • [39] Tameness of definably complete locally o-minimal structures and definable bounded multiplication
    Fujita, Masato
    Kawakami, Tomohiro
    Komine, Wataru
    MATHEMATICAL LOGIC QUARTERLY, 2022, 68 (04) : 496 - 515
  • [40] Tameness of definably complete locally o-minimal structures and definable bounded multiplication
    Fujita, Masato
    Kawakami, Tomohiro
    Komine, Wataru
    arXiv, 2021,