Let R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {R}}$$\end{document} be a polynomially bounded o-minimal expansion of the real field. Let f(z) be a transcendental entire function of finite order ρ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho $$\end{document} and type σ∈[0,∞]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma \in [0,\infty ]$$\end{document}. The main purpose of this paper is to show that if (ρ<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho <1$$\end{document}) or (ρ=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho =1$$\end{document} and σ=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma =0$$\end{document}), the restriction of f(z) to the real axis is not definable in R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {R}}$$\end{document}. Furthermore, we give a generalization of this result for any ρ∈[0,∞)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho \in [0,\infty )$$\end{document}.
机构:
Department of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Hiroshima, Kure,737-8512, JapanDepartment of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Hiroshima, Kure,737-8512, Japan
Fujita, Masato
Kawakami, Tomohiro
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Wakayama University, Wakayama,640-8510, JapanDepartment of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Hiroshima, Kure,737-8512, Japan
Kawakami, Tomohiro
Komine, Wataru
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, University of Tsukuba, Ibaraki,305-8571, JapanDepartment of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Hiroshima, Kure,737-8512, Japan