We study nonlinear boundary value problems of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
[\Psi u']' + F(x;u',u) = g, u(0) = u(1) = 0
$$\end{document}, where Φ is a coercive continuous operator from Lp to Lq, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
F(x;u'',u',u) = g, u(0) = u(1) = 0
$$\end{document}; first- and second-order partial differential equations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\Phi (x_1 ,x_2 ;u'_1 ,u'_2 ,u) = 0, \sum\limits_{i = 1}^\infty {[\Psi _i (u'_{x_i } )]'_{x_i } + F(x; \ldots ,u'_{x_i } , \ldots ,u) = g_i }
$$\end{document}; and general equations F(x; ..., u″ii, ...., ...., u′i, ...; u) = g(x) of elliptic type.