Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies

被引:0
|
作者
Pradeep S. Rajendran
Rosemary C. Challis
Charless C. Fowlkes
Peter Hanna
John D. Tompkins
Maria C. Jordan
Sarah Hiyari
Beth A. Gabris-Weber
Alon Greenbaum
Ken Y. Chan
Benjamin E. Deverman
Heike Münzberg
Jeffrey L. Ardell
Guy Salama
Viviana Gradinaru
Kalyanam Shivkumar
机构
[1] University of California - Los Angeles (UCLA),Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine
[2] California Institute of Technology,Division of Biology and Biological Engineering
[3] University of California - Irvine,Department of Computer Science
[4] University of Pittsburgh,Department of Cell Biology
[5] Louisiana State University,Neurobiology of Nutrition and Metabolism Department
[6] Massachusetts Institute of Technology,Stanley Center for Psychiatric Research, Broad Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.
引用
收藏
相关论文
共 50 条
  • [21] Resolving Viral Vector-Mediated Changes in Discrete Neural Circuits Subserving Anxious Temperament with In Vivo Magnetic Resonance Spectroscopy
    Nacewicz, Brendon M.
    Oler, Jonathan A.
    Roseboom, Patrick H.
    Riedel, Marissa K.
    Fekete, Eva M.
    Fox, Andrew S.
    Kalin, Ned H.
    BIOLOGICAL PSYCHIATRY, 2016, 79 (09) : 350S - 350S
  • [22] Identification of Heart Beat Abnormality using Heart Rate and Power Spectral Analysis of ECG
    Mahajan, Rashima
    Bansal, Dipali
    2015 INTERNATIONAL CONFERENCE ON SOFT COMPUTING TECHNIQUES AND IMPLEMENTATIONS (ICSCTI), 2015,
  • [23] Speaker identification using hybrid neural network support vector machine classifier
    Karthikeyan V.
    Priyadharsini S.S.
    Balamurugan K.
    Ramasamy M.
    International Journal of Speech Technology, 2022, 25 (4) : 1041 - 1053
  • [24] Automated plant identification using artificial neural network and support vector machine
    Jye, Kho Soon
    Manickam, Sugumaran
    Malek, Sorayya
    Mosleh, Mogeeb
    Dhillon, Sarinder Kaur
    FRONTIERS IN LIFE SCIENCE, 2017, 10 (01): : 98 - 107
  • [25] Predicting Heart Rate Variations of Deepfake Videos using Neural ODE
    Fernandes, Steven
    Raj, Sunny
    Ortiz, Eddy
    Vintila, Iustina
    Salter, Margaret
    Urosevic, Gordana
    Jha, Sumit K.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1721 - 1729
  • [26] Strategies for fault classification in transmission lines, using learning vector quantization neural networks
    Mazon, A. J.
    Zamora, I.
    Sagastabeitia, K. J.
    Valverde, V.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2006, 16 (04): : 365 - 378
  • [27] Heart rate variability system identification using different signal descriptors
    Kitney, RI
    Seydnejad, SR
    COMPUTERS IN CARDIOLOGY 1996, 1996, : 101 - 104
  • [28] Heart Rate Disorders Identification Using Superficial ECG and Invasive Electrogram
    Yuldashev, Zafar
    Anisimov, Aleksei
    Nemirko, Anatoly
    Manilo, Ludmila
    Skorobogatova, Alena
    XIV RUSSIAN-GERMANY CONFERENCE ON BIOMEDICAL ENGINEERING (RGC-2019), 2019, 2140
  • [29] Frailty Identification Using Heart Rate Dynamics: A Deep Learning Approach
    Eskandari, Maryam
    Parvaneh, Saman
    Ehsani, Hossein
    Fain, Mindy
    Toosizadeh, Nima
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3409 - 3417
  • [30] Automated identification of diabetic retinal exudates using support vector machines and neural networks
    Markham, R
    Osareh, A
    Mirmehdi, M
    Thomas, B
    Macipe, M
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 : U421 - U421