A Weak-Type Expression of the Orlicz Modular

被引:0
|
作者
Martin Křepela
Zdeněk Mihula
Javier Soria
机构
[1] Czech Technical University in Prague,Department of Mathematics, Faculty of Electrical Engineering
[2] Complutense University of Madrid,Department of Analysis and Applied Mathematics
[3] Interdisciplinary Mathematics Institute (IMI),undefined
来源
关键词
Orlicz modular; weak-Orlicz class; distributional approach; Maz’ya–Shaposhnikova formula; BBM formula; 46E30; 46A80; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
An equivalent expression of Orlicz modulars in terms of measure of level sets of difference quotients is established. The result in a sense complements the famous Maz’ya–Shaposhnikova formula for the fractional Gagliardo–Slobodeckij seminorm and its recent extension to the setting of Orlicz functions.
引用
收藏
相关论文
共 50 条
  • [41] The Limiting Weak-type Behaviors of Intrinsic Square Functions
    Han, Min
    Geng, Hanxiao
    Hao, Qiyu
    Hou, Xianming
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1929 - 1943
  • [42] Weighted mixed weak-type inequalities for multilinear operators
    Li, Kangwei
    Ombrosi, Sheldy J.
    Belen Picardi, M.
    STUDIA MATHEMATICA, 2019, 244 (02) : 203 - 215
  • [43] Weighted weak-type inequalities for generalized Hardy operators
    A. L. Bernardis
    F. J. Martín-Reyes
    P. Ortega Salvador
    Journal of Inequalities and Applications, 2006
  • [44] On the Weak-type Constant of the Beurling-Ahlfors Transform
    Banuelos, Rodrigo
    Janakiraman, Prabhu
    MICHIGAN MATHEMATICAL JOURNAL, 2009, 58 (02) : 339 - 357
  • [45] Two-weight weak-type inequalities for potential type operators
    Li Wen-ming
    Qi Jin-yun
    Zhang Ya-jing
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (03) : 313 - 318
  • [46] Weighted weak-type iterated and bilinear Hardy inequalities
    Garcia, V. Garcia
    Salvador, P. Ortega
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [47] A weak-type inequality for differentially subordinate harmonic functions
    Choi, CS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) : 2687 - 2696
  • [48] A weak-type inequality for uniformly bounded trigonometric polynomials
    E. D. Livshits
    Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 208 - 219
  • [49] Weak-type estimates for singular integrals and the Riesz transform
    Janakiraman, P
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) : 533 - 555
  • [50] Mixed weak-type inequalities in Euclidean spaces and in spaces of the homogeneous type
    Ibanez-Firnkorn, Gonzalo
    Rivera-Rios, Israel Pablo
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1370 - 1406