Degenerate integrability of quantum spin Calogero–Moser systems

被引:0
|
作者
Nicolai Reshetikhin
机构
[1] University of California,Department of Mathematics
[2] ITMO University,KdV Institute for Mathematics
[3] University of Amsterdam,undefined
来源
关键词
Quantum; Superintegrable; Calogero–Moser; 81E12; 22E46; 22E45;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this note is the proof of degenerate quantum integrability of quantum spin Calogero–Moser systems and the description of the spectrum of quantum Hamiltonians in terms of the decomposition of tensor products of irreducible representations of corresponding Lie algebra.
引用
收藏
页码:187 / 200
页数:13
相关论文
共 50 条
  • [31] Nilpotent integrability, reduction of dynamical systems and a third-order Calogero-Moser system
    Ibort, A.
    Marmo, G.
    Rodriguez, M. A.
    Tempesta, P.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (05) : 1513 - 1540
  • [32] On the eigenfunctions of hyperbolic quantum Calogero–Moser–Sutherland systems in a Morse potential
    J. F. van Diejen
    Letters in Mathematical Physics, 2020, 110 : 1215 - 1235
  • [33] Quantum elliptic Calogero-Moser systems from gauge origami
    Chen, Heng-Yu
    Kimura, Taro
    Lee, Norton
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [34] Quantum elliptic Calogero-Moser systems from gauge origami
    Heng-Yu Chen
    Taro Kimura
    Norton Lee
    Journal of High Energy Physics, 2020
  • [35] On spin Calogero-Moser system at infinity
    Khoroshkin, S. M.
    Matushko, M. G.
    Sklyanin, E. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (11)
  • [36] Flows of Calogero-Moser Systems
    Ben-Zvi, David
    Nevins, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [37] The geometry of Calogero-Moser systems
    Hurtubise, J
    Nevins, T
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2091 - 2116
  • [38] Calogero-Moser systems and Hitchin systems
    Hurtubise, JC
    Markman, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (03) : 533 - 552
  • [39] The quantum angular Calogero-Moser model
    Mikhail Feigin
    Olaf Lechtenfeld
    Alexios P. Polychronakos
    Journal of High Energy Physics, 2013
  • [40] Geometry of Calogero-Moser systems
    Biswas, Indranil
    Hurtubise, Jacques
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)