Disaster prediction model based on support vector machine for regression and improved differential evolution

被引:0
|
作者
Xiaobing Yu
机构
[1] Nanjing University of Information Science and Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
[2] Nanjing University of Information Science and Technology,Research Center for Prospering Jiangsu Province with Talents
[3] Nanjing University of Information Science and Technology,China Institute for Manufacture Developing
[4] Nanjing University of Information Science and Technology,School of Economics and Management
来源
Natural Hazards | 2017年 / 85卷
关键词
Support vector machine; Disaster prediction; Differential evolution; Hybrid model;
D O I
暂无
中图分类号
学科分类号
摘要
The kernel parameters setting of SVM influences prediction precision. The hybrid model based on SVM for regression and improved differential evolution is proposed to enhance the prediction precision. The improved differential evolution is used to optimize the kernel parameters. The improved differential evolution algorithm employs two trial vector generation strategies and two control parameter settings. The first-generation strategy is with best solution, and the second strategy is without best solution. Three categories of disasters time series including flood, drought and storm from Ministry of agriculture of China are used to verify the validity of the proposed model. Compared with the grid SVM and other models, the proposed hybrid model improves the prediction precision of SVM.
引用
收藏
页码:959 / 976
页数:17
相关论文
共 50 条
  • [11] An annual load forecasting model based on support vector regression with differential evolution algorithm
    Wang, Jianjun
    Li, Li
    Niu, Dongxiao
    Tan, Zhongfu
    APPLIED ENERGY, 2012, 94 : 65 - 70
  • [12] Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
    Hamdi, Takoua
    Ben Ali, Jaouher
    Di Costanzo, Veronique
    Fnaiech, Farhat
    Moreau, Eric
    Ginoux, Jean-Marc
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (02) : 362 - 372
  • [13] Prediction intervals for support vector machine regression
    Seok, K
    Hwang, C
    Cho, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (10) : 1887 - 1898
  • [14] Network traffic prediction based on improved support vector machine
    Wang Q.-M.
    Fan A.-W.
    Shi H.-S.
    International Journal of System Assurance Engineering and Management, 2017, 8 (Suppl 3) : 1976 - 1980
  • [15] AN IMPROVED SUPPORT VECTOR MACHINE MODEL BASED ON WAVECLUSTER
    Deng, Weiguo
    Wang, Li
    Qi, Jing
    Yu, Shan
    Xiang, Tiyan
    ICIM2012: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANAGEMENT, 2012, : 514 - 518
  • [16] Local prediction of Complex Time Series based on Support Vector Machine and Differential Evolution algorithm
    Wang, Jun
    Zhang, Jia
    Xu, Huang-Chang
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS, 2009, : 425 - 428
  • [17] Differential evolution based parameters selection for support vector machine
    Li Jun
    Ding Lixin
    Xing Ying
    2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 284 - 288
  • [18] Seasonal prediction of PM2.5 based on support vector machine model and multiple regression model
    Yang, Shuran
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [19] Prediction of network public opinion based on improved grey wolf optimized support vector machine regression
    Lin L.
    Chen F.
    Xie J.
    Li F.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2022, 42 (02): : 487 - 498
  • [20] Online prediction model based on support vector machine
    Wang, Wenjian
    Men, Changqian
    Lu, Weizhen
    NEUROCOMPUTING, 2008, 71 (4-6) : 550 - 558