On Approximating the Stationary Distribution of Time-Reversible Markov Chains

被引:0
|
作者
Marco Bressan
Enoch Peserico
Luca Pretto
机构
[1] Sapienza Università di Roma,Dipartimento di Informatica
[2] Università degli Studi di Padova,Dipartimento di Ingegneria dell’Informazione
来源
关键词
Markov chains; MCMC sampling; Large graph algorithms; Randomized algorithms; Sublinear algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require Õ(τ/π(v))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {O}(\tau /\pi (v))$\end{document} operations to approximate the probability π(v) of a state v in a chain with mixing time τ, and even the best available techniques still have complexity Õ(τ1.5/π(v)0.5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {O}(\tau ^{1.5}/\pi (v)^{0.5})$\end{document}; and since these complexities depend inversely on π(v), they can grow beyond any bound in the size of the chain or in its mixing time. In this paper we show that, for time-reversible Markov chains, there exists a simple randomized approximation algorithm that breaks this “small-π(v) barrier”.
引用
收藏
页码:444 / 466
页数:22
相关论文
共 50 条
  • [31] The algebra of reversible Markov chains
    Pistone, Giovanni
    Rogantin, Maria Piera
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) : 269 - 293
  • [32] Accelerating reversible Markov chains
    Chen, Ting-Li
    Hwang, Chii-Ruey
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 1956 - 1962
  • [33] The algebra of reversible Markov chains
    Giovanni Pistone
    Maria Piera Rogantin
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 269 - 293
  • [34] A monotonicity in reversible Markov chains
    Lund, Robert
    Zhao, Ying
    Kiessler, Peter C.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) : 486 - 499
  • [35] Estimation in Reversible Markov Chains
    Annis, David H.
    Kiessler, Peter C.
    Lund, Robert
    Steuber, Tara L.
    [J]. AMERICAN STATISTICIAN, 2010, 64 (02): : 116 - 120
  • [36] APPROXIMATING COUNTABLE MARKOV CHAINS - FREEDMAN,D
    TWEEDIE, RL
    [J]. AUSTRALIAN JOURNAL OF STATISTICS, 1974, 16 (01): : 67 - 68
  • [37] APPROXIMATING COUNTABLE MARKOV CHAINS - FREEDMAN,D
    KENDALL, D
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1973, 136 : 454 - 456
  • [38] Singular perturbation problems for time-reversible systems
    Buzzi, CA
    Da Silva, PR
    Teixeira, MA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) : 3323 - 3331
  • [39] APPROXIMATING COUNTABLE MARKOV CHAINS - FREEDMAN,D
    CRAIN, BR
    [J]. TECHNOMETRICS, 1974, 16 (04) : 635 - 635
  • [40] Fast computation of stationary joint probability distribution of sparse Markov chains
    Ding, Weiyang
    Ng, Michael
    Wei, Yimin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 68 - 85