On the Koebe Quarter Theorem for certain polynomials

被引:0
|
作者
Szymon Ignaciuk
Maciej Parol
机构
[1] University of Life Sciences in Lublin,Department of Applied Mathematics and Computer Science
[2] The John Paul II Catholic University of Lublin,Department of Mathematical Analysis
来源
关键词
Univalent polynomials; Koebe radius; Critical points; 30C10; 30C15; 30C25; 30C45; 30C75;
D O I
暂无
中图分类号
学科分类号
摘要
We study problems similar to the Koebe Quarter Theorem for close-to-convex polynomials with all zeros of derivative in T:={z∈C:|z|=1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}:=\{z\in {\mathbb {C}}:|z|=1\}$$\end{document}. We found minimal disc containing all images of D:={z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}:=\{z\in {\mathbb {C}}: |z|<1\}$$\end{document} and maximal disc contained in all images of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}$$\end{document} through polynomials of degree 3 and 4. Moreover we determine the extremal functions for both problems.
引用
收藏
相关论文
共 50 条