ETELMAD: Anomaly Detection Using Enhanced Transient Extreme Machine Learning System in Wireless Sensor Networks

被引:0
|
作者
Chaya Ravindra
Manjunath R. Kounte
Gangadharaiah Soralamavu Lakshmaiah
V. Nuthan Prasad
机构
[1] Reva University,School of ECE
[2] REVA University,School of Electronics Communications Engineering
[3] Ramaiah Institute of Technology,Department of Electronics and Communication Engineering
[4] Ramaiah Institute of Technology,undefined
来源
关键词
Wireless sensor network; Anomaly detection; Prediction; Enhanced transient search optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Anomaly detection is a major task for ensuring security in WSNs, and they are sensitive to several attacks, which cause the node to break and generate faulty results. This proposed architecture introduces a method named Enhanced Transient Extreme Learning Machine Anomaly Detection to resolve such an issue. The detection of anomalies in the sensor data is recorded in three stages: data compression, prediction, and anomalous detection. The data collected from the network is pre-processed, and the duplicate values are eliminated from the dataset. Piecewise Aggregate Approximation is employed for the data compression process. This method can extract a low-dimensional set of features with less dimension and high accuracy. The reduction in dimensionality plays a major role in the WSN environment and attains less computation or training time. The second phase is prediction, done by an Extreme Learning Machine (ELM). The parameters of ELM are optimized by the meta-heuristic approach Enhanced Transient Search Arithmetic Optimization. Finally, the anomalous data is detected using the dynamic thresholding method. Dynamic thresholding is a process that generates a set of threshold values to differentiate the normal and abnormal sensed data. The PYTHON platform is used to simulate the proposed process. The achieved performance is compared over other models based on some measures to depict the efficacy of the proposed anomaly detection model. The overall accuracy achieved by this proposed architecture for the IBRL dataset is 97.4%, which is more efficient than other existing approaches.
引用
收藏
页码:21 / 41
页数:20
相关论文
共 50 条
  • [21] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    P. Indira Priya
    S. Muthurajkumar
    S. Sheeba Daisy
    Wireless Personal Communications, 2022, 122 : 2441 - 2462
  • [22] Data Fault Detection in Wireless Sensor Networks Using Machine Learning Techniques
    Priya, P. Indira
    Muthurajkumar, S.
    Daisy, S. Sheeba
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 122 (03) : 2441 - 2462
  • [23] Reducing energy consumption of wireless sensor networks using rules and extreme learning machine algorithm
    Duraisamy, Sathya
    Pugalendhi, Ganesh Kumar
    Balaji, Prasanalakshmi
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (09): : 5443 - 5448
  • [24] An Enhanced Energy Optimization Model for Industrial Wireless Sensor Networks Using Machine Learning
    Bagwari, Ashish
    Logeshwaran, J.
    Usha, K.
    Raju, Kannadasan
    Alsharif, Mohammed H.
    Uthansakul, Peerapong
    Uthansakul, Monthippa
    IEEE ACCESS, 2023, 11 : 96343 - 96362
  • [25] Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare
    Haque, Shah Ahsanul
    Rahman, Mustafizur
    Aziz, Syed Mahfuzul
    SENSORS, 2015, 15 (04) : 8764 - 8786
  • [26] Fault Detection in Wireless Sensor Networks: A Machine Learning Approach
    Warriach, Ehsan Ullah
    Tei, Kenji
    2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), 2013, : 758 - 765
  • [27] Blockchain-machine learning fusion for enhanced malicious node detection in wireless sensor networks
    Khashan, Osama A.
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [28] Anomaly Detection in Sensor Systems Using Lightweight Machine Learning
    Bosman, H. H. W. J.
    Liotta, A.
    Iacca, G.
    Wortche, H. J.
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 7 - 13
  • [29] A Study on Machine Learning Based Anomaly Detection Approaches in Wireless Sensor Network
    Dwivedi, Rajendra Kumar
    Rai, Arun Kumar
    Kumar, Rakesh
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 194 - 199
  • [30] Distributed anomaly detection in wireless sensor networks
    Rajasegarar, Sutharshan
    Leckie, Christopher
    Palaniswami, Marimuthu
    Bezdek, James C.
    2006 10TH IEEE SINGAPORE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, VOLS 1 AND 2, 2006, : 728 - +