Cutting Sequences for Geodesic Flow on the Modular Surface and Continued Fractions

被引:0
|
作者
David J. Grabiner
Jeffrey C. Lagarias
机构
[1]  Arizona State University,
[2] Tempe,undefined
[3] AZ,undefined
[4]  AT&T Labs,undefined
[5] Florham Park,undefined
[6] NJ,undefined
来源
关键词
2000 Mathematics Subject Classification: 37B10; 37D40; 37E15; 11A53; Key words: Symbolic dynamics; cutting sequences; modular group; modular surface; continued fractions;
D O I
暂无
中图分类号
学科分类号
摘要
 This paper describes the cutting sequences of geodesic flow on the modular surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} with respect to the standard fundamental domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The cutting sequence for a vertical geodesic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is related to a one-dimensional continued fraction expansion for θ, called the one-dimensional Minkowski geodesic continued fraction (MGCF) expansion, which is associated to a parametrized family of reduced bases of a family of 2-dimensional lattices. The set of cutting sequences for all geodesics forms a two-sided shift in a symbol space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} which has the same set of forbidden blocks as for vertical geodesics. We show that this shift is not a sofic shift, and that it characterizes the fundamental domain ℱ up to an isometry of the hyperbolic plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We give conversion methods between the cutting sequence for the vertical geodesic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the MGCF expansion of θ and the additive ordinary continued fraction (ACF) expansion of θ. We show that the cutting sequence and MGCF expansions can each be computed from the other by a finite automaton, and the ACF expansion of θ can be computed from the cutting sequence for the vertical geodesic θ + it by a finite automaton. However, the cutting sequence for a vertical geodesic cannot be computed from the ACF expansion by any finite automaton, but there is an algorithm to compute its first \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} symbols when given as input the first \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} symbols of the ACF expansion, which takes time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:295 / 339
页数:44
相关论文
共 50 条
  • [1] Cutting sequences for geodesic flow on the modular surface and continued fractions
    Grabiner, DJ
    Lagarias, JC
    [J]. MONATSHEFTE FUR MATHEMATIK, 2001, 133 (04): : 295 - 339
  • [2] Geodesic flow on the Teichmuller disk of the regular octagon, cutting sequences and octagon continued fractions maps
    Smillie, John
    Ulcigrai, Corinna
    [J]. DYNAMICAL NUMBERS: INTERPLAY BETWEEN DYNAMICAL SYSTEMS AND NUMBER THEORY, 2010, 532 : 29 - +
  • [3] SIMPLE CONTINUED FRACTIONS AND CUTTING SEQUENCES
    Hockman, Meira
    van Rensburg, Richard
    [J]. QUAESTIONES MATHEMATICAE, 2013, 36 (03) : 437 - 448
  • [4] THE MODULAR SURFACE AND CONTINUED FRACTIONS
    SERIES, C
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1985, 31 (FEB): : 69 - 80
  • [5] Geodesic Continued Fractions
    Beardon, A. F.
    Hockman, M.
    Short, I.
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 133 - 150
  • [6] On certain orbits of geodesic flow and (a,b)-continued fractions
    Choudhuri, Manoj
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (01):
  • [7] GEODESIC ROSEN CONTINUED FRACTIONS
    Short, Ian
    Walker, Mairi
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04): : 519 - 549
  • [8] On periodicity of geodesic continued fractions
    Bekki, Hohto
    [J]. JOURNAL OF NUMBER THEORY, 2017, 177 : 181 - 210
  • [9] Geodesic continued fractions and LLL
    Beukers, Frits
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (04): : 632 - 645
  • [10] GEODESIC MULTIDIMENSIONAL CONTINUED FRACTIONS
    LAGARIAS, JC
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 : 464 - 488