On periodicity of geodesic continued fractions

被引:2
|
作者
Bekki, Hohto [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Geodesic continued fractions; Lagrange's theorem; Unit groups; QUADRATIC-FORMS; ADIC NUMBERS;
D O I
10.1016/j.jnt.2017.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present some generalizations of Lagrange's theorem in the classical theory of continued fractions motivated by the geometric interpretation of the classical theory in terms of closed geodesics on the modular curve. As a result, for an extension F/F' of number fields with rank one relative unit group, we construct a geodesic multi-dimensional continued fraction algorithm to "expand" any basis of F over Q, and prove its periodicity. Furthermore, we show that the periods describe the relative unit group. By developing the above argument adelically, we also obtain a p-adelic continued fraction algorithm and its periodicity for imaginary quadratic irrationals. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:181 / 210
页数:30
相关论文
共 50 条
  • [1] Geodesic Continued Fractions
    Beardon, A. F.
    Hockman, M.
    Short, I.
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 133 - 150
  • [2] GEODESIC ROSEN CONTINUED FRACTIONS
    Short, Ian
    Walker, Mairi
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04): : 519 - 549
  • [3] Geodesic continued fractions and LLL
    Beukers, Frits
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (04): : 632 - 645
  • [4] GEODESIC MULTIDIMENSIONAL CONTINUED FRACTIONS
    LAGARIAS, JC
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 : 464 - 488
  • [5] THE PERIODICITY OF MULTIDIMENSIONAL CONTINUED FRACTIONS
    KORKINA, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 777 - 780
  • [6] Geodesic Gaussian Integer Continued Fractions
    Hockman, Meira
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2020, 69 (02) : 297 - 322
  • [7] On the periodicity of continued fractions in hyperelliptic fields
    Platonov, V. P.
    Fedorov, G. V.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (03) : 254 - 258
  • [8] Periodicity of certain generalized continued fractions
    Weintraub, Steven H.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 189 (04): : 765 - 770
  • [9] On the periodicity of continued fractions in elliptic fields
    Platonov, V. P.
    Fedorov, G. V.
    [J]. DOKLADY MATHEMATICS, 2017, 96 (01) : 332 - 335
  • [10] On the periodicity of continued fractions in elliptic fields
    V. P. Platonov
    G. V. Fedorov
    [J]. Doklady Mathematics, 2017, 96 : 332 - 335