Convergence of terrestrial plant production across global climate gradients

被引:0
|
作者
Sean T. Michaletz
Dongliang Cheng
Andrew J. Kerkhoff
Brian J. Enquist
机构
[1] University of Arizona,Department of Ecology and Evolutionary Biology
[2] Key Laboratory of Humid Subtropical Eco-geographical Process,Department of Biology
[3] Fujian Normal University,undefined
[4] Ministry of Education,undefined
[5] Fuzhou,undefined
[6] Fujian Province 350007,undefined
[7] China,undefined
[8] Kenyon College,undefined
[9] The Santa Fe Institute,undefined
[10] USA,undefined
[11] 1399 Hyde Park Road,undefined
[12] Santa Fe,undefined
[13] New Mexico 87501,undefined
[14] USA,undefined
[15] The iPlant Collaborative,undefined
[16] Thomas W. Keating Bioresearch Building,undefined
[17] 1657 East Helen Street,undefined
[18] Tucson,undefined
[19] Arizona 85721,undefined
[20] USA,undefined
[21] Aspen Center for Environmental Studies,undefined
[22] 100 Puppy Smith Street,undefined
[23] Aspen,undefined
[24] Colorado 81611,undefined
[25] USA,undefined
来源
Nature | 2014年 / 512卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.
引用
收藏
页码:39 / 43
页数:4
相关论文
共 50 条
  • [1] Convergence of terrestrial plant production across global climate gradients
    Michaletz, Sean T.
    Cheng, Dongliang
    Kerkhoff, Andrew J.
    Enquist, Brian J.
    [J]. NATURE, 2014, 512 (7512) : 39 - +
  • [2] Correction: Corrigendum: Convergence of terrestrial plant production across global climate gradients
    Sean T. Michaletz
    Dongliang Cheng
    Andrew J. Kerkhoff
    Brian J. Enquist
    [J]. Nature, 2016, 537 : 432 - 432
  • [3] Convergence of terrestrial plant production across global climate gradients (vol 512, pg 39, 2014)
    Michaletz, Sean T.
    Cheng, Dongliang
    Kerkhoff, Andrew J.
    Enquist, Brian J.
    [J]. NATURE, 2016, 537 (7620) : 432 - 432
  • [4] Convergence of soil nitrogen isotopes across global climate gradients
    Craine, Joseph M.
    Elmore, Andrew J.
    Wang, Lixin
    Augusto, Laurent
    Baisden, W. Troy
    Brookshire, E. N. J.
    Cramer, Michael D.
    Hasselquist, Niles J.
    Hobbie, Erik A.
    Kahmen, Ansgar
    Koba, Keisuke
    Kranabetter, J. Marty
    Mack, Michelle C.
    Marin-Spiotta, Erika
    Mayor, Jordan R.
    McLauchlan, Kendra K.
    Michelsen, Anders
    Nardoto, Gabriela B.
    Oliveira, Rafael S.
    Perakis, Steven S.
    Peri, Pablo L.
    Quesada, Carlos A.
    Richter, Andreas
    Schipper, Louis A.
    Stevenson, Bryan A.
    Tumer, Benjamin L.
    Viani, Ricardo A. G.
    Wanek, Wolfgang
    Zeller, Bernd
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [5] Convergence of soil nitrogen isotopes across global climate gradients
    Joseph M. Craine
    Andrew J. Elmore
    Lixin Wang
    Laurent Augusto
    W. Troy Baisden
    E. N. J. Brookshire
    Michael D. Cramer
    Niles J. Hasselquist
    Erik A. Hobbie
    Ansgar Kahmen
    Keisuke Koba
    J. Marty Kranabetter
    Michelle C. Mack
    Erika Marin-Spiotta
    Jordan R. Mayor
    Kendra K. McLauchlan
    Anders Michelsen
    Gabriela B. Nardoto
    Rafael S. Oliveira
    Steven S. Perakis
    Pablo L. Peri
    Carlos A. Quesada
    Andreas Richter
    Louis A. Schipper
    Bryan A. Stevenson
    Benjamin L. Turner
    Ricardo A. G. Viani
    Wolfgang Wanek
    Bernd Zeller
    [J]. Scientific Reports, 5
  • [6] Drivers of terrestrial plant production across broad geographical gradients
    Michaletz, Sean T.
    Kerkhoff, Andrew J.
    Enquist, Brian J.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2018, 27 (02): : 166 - 174
  • [7] Terrestrial plant production and climate change
    Friend, Andrew D.
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2010, 61 (05) : 1293 - 1309
  • [8] GLOBAL CLIMATE-CHANGE AND TERRESTRIAL NET PRIMARY PRODUCTION
    MELILLO, JM
    MCGUIRE, AD
    KICKLIGHTER, DW
    MOORE, B
    VOROSMARTY, CJ
    SCHLOSS, AL
    [J]. NATURE, 1993, 363 (6426) : 234 - 240
  • [9] Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation
    Quetin, Gregory R.
    Swann, Abigail L. S.
    [J]. JOURNAL OF CLIMATE, 2017, 30 (15) : 5835 - 5849
  • [10] Risk hotspots for terrestrial plant invaders under climate change at the global scale
    Wan, Ji-Zhong
    Wang, Chun-Jing
    Yu, Fei-Hai
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (12)