Asymmetric α-benzylation of cyclic ketones enabled by concurrent chemical aldol condensation and biocatalytic reduction

被引:0
|
作者
Yunting Liu
Teng Ma
Zhongxu Guo
Liya Zhou
Guanhua Liu
Ying He
Li Ma
Jing Gao
Jing Bai
Frank Hollmann
Yanjun Jiang
机构
[1] Hebei University of Technology,School of Chemical Engineering and Technology
[2] Hebei University of Science & Technology,College of Food Science and Biology
[3] Delft University of Technology,Department of Biotechnology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Chemoenzymatic cascade catalysis has emerged as a revolutionary tool for streamlining traditional retrosynthetic disconnections, creating new possibilities for the asymmetric synthesis of valuable chiral compounds. Here we construct a one-pot concurrent chemoenzymatic cascade by integrating organobismuth-catalyzed aldol condensation with ene-reductase (ER)-catalyzed enantioselective reduction, enabling the formal asymmetric α-benzylation of cyclic ketones. To achieve this, we develop a pair of enantiocomplementary ERs capable of reducing α-arylidene cyclic ketones, lactams, and lactones. Our engineered mutants exhibit significantly higher activity, up to 37-fold, and broader substrate specificity compared to the parent enzyme. The key to success is due to the well-tuned hydride attack distance/angle and, more importantly, to the synergistic proton-delivery triade of Tyr28-Tyr69-Tyr169. Molecular docking and density functional theory (DFT) studies provide important insights into the bioreduction mechanisms. Furthermore, we demonstrate the synthetic utility of the best mutants in the asymmetric synthesis of several key chiral synthons.
引用
收藏
相关论文
共 43 条