Numerical modeling of oscillatory turbulent boundary layer flows and sediment suspension

被引:0
|
作者
Tang L. [1 ]
Lin P. [1 ]
机构
[1] State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan
来源
J. Ocean Eng. Mar. Energy | / 2卷 / 133-144期
基金
中国国家自然科学基金;
关键词
Boundary layers; BSL k–ω model; Suspended sediment concentration; Velocity profile;
D O I
10.1007/s40722-014-0010-2
中图分类号
学科分类号
摘要
In this study, an integrated numerical model is developed and applied to simulate oscillatory boundary layer flows and the corresponding sediment suspension. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations for flows and the transient transport equation for sediment. The turbulence closure is accomplished by the baseline (BSL) k–ω two-equation model. The model is capable of simulating oscillatory boundary flows at different Reynolds number regimes, namely, laminar, transitional and turbulent. The model can provide detailed mean (ensemble average) flow velocity, turbulence characteristics and sediment suspension within the boundary layer. The numerical results of mean flow velocity and turbulence kinetic energy are in agreement with the available experimental data and analytical solutions. In addition, the calculated results of period-averaged sediment concentration are also validated against the measurement data, yet the instantaneous results exhibit small phase differences. The proposed model improves the predictive capability for sediment suspension within boundary layers, which is helpful in defining a suitable model for relevant practical applications in coastal engineering. © 2014, Springer International Publishing AG.
引用
收藏
页码:133 / 144
页数:11
相关论文
共 50 条
  • [41] Numerical modeling of some free turbulent flows
    Chernykh, G. G.
    Demenkov, A. G.
    Fomina, An.
    Ilyushin, B. B.
    Kostomakha, V. A.
    Moshkin, N. P.
    Voropayeva, O. F.
    [J]. COMPUTATIONAL SCIENCE AND HIGH PERFORMANCE COMPUTING III, 2008, 101 : 82 - +
  • [42] Electrical measurement of sediment layer thickness under suspension flows
    de Rooij, F
    Dalziel, SB
    Linden, PF
    [J]. EXPERIMENTS IN FLUIDS, 1999, 26 (05) : 470 - 474
  • [43] NUMERICAL MODELING OF TURBULENT FLOWS WITH 2 SCALES
    PIRONNEAU, O
    [J]. JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1986, : 95 - 107
  • [44] Electrical measurement of sediment layer thickness under suspension flows
    F. de Rooij
    S. B. Dalziel
    P. F. Linden
    [J]. Experiments in Fluids, 1999, 26 : 470 - 474
  • [45] A study of particle motion in turbulent layer boundary flows
    Zeng, QC
    Liu, XB
    Guo, L
    [J]. STOCHASTIC HYDRAULICS '96, 1996, : 199 - 204
  • [46] A comparison of turbulent pipe, channel and boundary layer flows
    Monty, J. P.
    Hutchins, N.
    Ng, H. C. H.
    Marusic, I.
    Chong, M. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 632 : 431 - 442
  • [47] EQUILIBRIUM, OR NONEQUILIBRIUM, OF TURBULENT BOUNDARY-LAYER FLOWS
    TANI, I
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 1987, 63 (03): : 96 - 100
  • [48] Numerical investigation of turbulent boundary layer relaminarisation
    Borges, A. D. S.
    Lopes, A. Silva
    Palma, J. M. L. M.
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 779 - 779
  • [49] Direct Numerical Simulation of Incompressible Flows in a Zero-Pressure Gradient Turbulent Boundary Layer
    Lin, Chuanta
    Zhu, Zuojin
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2010, 2 (04) : 503 - 517
  • [50] Numerical simulation of shock wave/turbulent boundary-layer interactions in transonic and supersonic flows
    Tan, Jie
    Jin, Jie
    [J]. Tuijin Jishu/Journal of Propulsion Technology, 2010, 31 (04): : 394 - 400