Modulation spaces and pseudodifferential operators

被引:0
|
作者
Karlheinz Gröchenig
Christopher Heil
机构
[1] University of Connecticut,Department of Mathematics U
[2] Georgia Institute of Technology,9
来源
关键词
Primary 35S05, 47G30; Secondary 42C15, 47B10;
D O I
暂无
中图分类号
学科分类号
摘要
We use methods from time-frequency analysis to study boundedness and traceclass properties of pseudodifferential operators. As natural symbol classes, we use the modulation spaces onR2d, which quantify the notion of the time-frequency content of a function or distribution. We show that if a symbol σ lies in the modulation spaceM∞,1 (R2d), then the corresponding pseudodifferential operator is bounded onL2(Rd) and, more generally, on the modulation spacesMp,p (Rd) for 1≤p≤∞. If σ lies in the modulation spaceM2,2s(R2d)=Ls/2(R2d)∩Hs(R2d), i.e., the intersection of a weightedL2-space and a Sobolev space, then the corresponding operator lies in a specified Schatten class. These results hold for both the Weyl and the Kohn-Nirenberg correspondences. Using recent embedding theorems of Lipschitz and Fourier spaces into modulation spaces, we show that these results improve on the classical Calderòn-Vaillancourt boundedness theorem and on Daubechies' trace-class results.
引用
收藏
页码:439 / 457
页数:18
相关论文
共 50 条
  • [21] Almost Diagonalization of τ-Pseudodifferential Operators with Symbols in Wiener Amalgam and Modulation Spaces
    Cordero, Elena
    Nicola, Fabio
    Trapasso, S. Ivan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 1927 - 1957
  • [22] SCHATTEN p-CLASS PROPERTY OF PSEUDODIFFERENTIAL OPERATORS WITH SYMBOLS IN MODULATION SPACES
    Kobayashi, Masaharu
    Miyachi, Akihiko
    NAGOYA MATHEMATICAL JOURNAL, 2012, 205 : 119 - 148
  • [23] Pseudodifferential operators on Bochner spaces and an application
    Pierre Portal
    Željko Štrkalj
    Mathematische Zeitschrift, 2006, 253 : 805 - 819
  • [24] Pseudodifferential Operators on Local Hardy Spaces
    Hounie, J.
    dos Santos Kapp, Rafael Augusto
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (02) : 153 - 178
  • [25] Pseudodifferential Operators on Weighted Hardy Spaces
    Deng, Yu-long
    Long, Shun-chao
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [26] Pseudodifferential operators on Bochner spaces and an application
    Portal, Pierre
    Strkalj, Zeljko
    MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 805 - 819
  • [27] Pseudodifferential operators on localized Besov spaces
    Moussai M.
    Allaoui S.E.
    Acta Mathematica Vietnamica, 2013, 38 (2) : 255 - 278
  • [28] Pseudodifferential Operators on Local Hardy Spaces
    J. Hounie
    Rafael Augusto dos Santos Kapp
    Journal of Fourier Analysis and Applications, 2009, 15 : 153 - 178
  • [29] Pseudodifferential operators and spaces of type S
    Cappiello, M
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 681 - 688
  • [30] Function spaces and classes of pseudodifferential operators
    Czaja, W
    Rzeszotnik, Z
    TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (01) : 131 - 140