Incubator;
Bioreactor;
Perfusion;
Convection;
3D culture;
Neuron;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
High density, three-dimensional (3D) cultures present physical similarities to in vivo tissue and are invaluable tools for pre-clinical therapeutic discoveries and development of tissue engineered constructs. Unfortunately, the use of dense cultures is hindered by intra-culture transport limits allowing just a few layer thick cultures for reproducible studies. In order to overcome diffusion limits in intra-culture nutrient and gas availability, a simple scalable microfluidic perfusion platform was developed and validated. A novel perfusion approach maintained laminar flow of nutrients through the culture to meet metabolic need, while removing depleted medium and catabolites. Velocity distributions and 3D flow patterns were measured using microscopic particle image velocimetry. The effectiveness of forced convection laminar perfusion was confirmed by culturing 700 µm thick neural-astrocytic (1:1) constructs at cell density approaching that of the brain (50,000 cells/mm3). At the optimized flow rate of the nutrient medium, the culture viability reached 90% through the full construct thickness at 2 days of perfusion while unperfused controls exhibited widespread cell death. The membrane aerated perfusion platform was integrated within a miniature, imaging accessible enclosure enabling temperature and gas control of the culture environment. Temperature measurements demonstrated fast feedback response to environmental changes resulting in the maintenance of the physiological temperature within 37 ± 0.2°C. Reproducible culturing of tissue equivalents within dynamically controlled environments will provide higher fidelity to in vivo function in an in vitro accessible format for cell-based assays and regenerative medicine.
机构:
Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USALawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
Lam, Doris
Fischer, Nicholas O.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USALawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
Fischer, Nicholas O.
Enright, Heather A.
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USALawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
机构:
Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, RussiaSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Bikmulina, Polina
Kosheleva, Nastasia
论文数: 0引用数: 0
h-index: 0
机构:
Sechenov First Moscow State Med Univ, Inst Regenerat Med, Moscow, Russia
FSBSI Inst Gen Pathol & Pathophysiol, Moscow, Russia
Sechenov Univ, Lab Clin Smart Nanotechnol, Moscow, RussiaSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Kosheleva, Nastasia
Shpichka, Anastasia
论文数: 0引用数: 0
h-index: 0
机构:
Sechenov First Moscow State Med Univ, Inst Regenerat Med, Moscow, Russia
Sechenov Univ, Lab Clin Smart Nanotechnol, Moscow, RussiaSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Shpichka, Anastasia
Yusupov, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
RAS, Inst Photon Technol FSRC Crystallog & Photo, Troitsk, RussiaSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Yusupov, Vladimir
Gogvadze, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State Univ, Fac Med, Moscow, Russia
Karolinska Inst, Inst Environm Med, Div Toxicol, Stockholm, SwedenSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Gogvadze, Vladimir
Rochev, Yury
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Ireland, Galway, IrelandSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia
Rochev, Yury
Timashev, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Sechenov First Moscow State Med Univ, Inst Regenerat Med, Moscow, Russia
Sechenov Univ, Lab Clin Smart Nanotechnol, Moscow, RussiaSechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personali, Moscow, Russia