A Multivalued Approach to the Planar Isosceles Three Body Problem

被引:0
|
作者
Cristina Chiralt
Luis Marco
José Martínez-Alfaro
机构
[1] Universidad Jaume I,Departamento de Matemáticas
[2] Universitat de València,Departament de Matemàtica Aplicada
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Differential inclusions; Celestial mechanics; 34A60;
D O I
暂无
中图分类号
学科分类号
摘要
The isosceles three body problem consists of three point masses located on the vertices of an isosceles triangle on the plane. The two masses on the asymmetric edge are equal. This problem has been extensively studied but not as a perturbation of the Kepler problem. In this case we arrive at a differential inclusion as a natural formulation when we regularize the problem. We also derive an extension of the vectorfield that allows us to consider orbits across singular sets.
引用
收藏
页码:443 / 459
页数:16
相关论文
共 50 条
  • [21] On the Parametric Stability of the Isosceles Triangular Libration Points in the Planar Elliptical Charged Restricted Three-body Problem
    Perez-Rothen, Yocelyn
    Valeriano, Lucas Rezende
    Vidal, Claudio
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (01): : 98 - 121
  • [22] On the Parametric Stability of the Isosceles Triangular Libration Points in the Planar Elliptical Charged Restricted Three-body Problem
    Yocelyn Pérez-Rothen
    Lucas Rezende Valeriano
    Claudio Vidal
    Regular and Chaotic Dynamics, 2022, 27 : 98 - 121
  • [23] HYPERBOLICITY FOR SYMMETRIC PERIODIC ORBITS IN THE ISOSCELES THREE BODY PROBLEM
    Offin, Daniel
    Cabral, Hildeberto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (02): : 379 - 392
  • [24] Symbolic dynamics in the restricted elliptic isosceles three body problem
    Guardia, Marcel
    Paradela, Jaime
    Seara, Tere M.
    Vidal, Claudio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 294 : 143 - 177
  • [25] New Phenomena in the Spatial Isosceles Three-Body Problem
    Yan, Duokui
    Ouyang, Tiancheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):
  • [26] MOTION NEAR TOTAL COLLAPSE IN THE PLANAR ISOSCELES 3-BODY PROBLEM
    DEVANEY, RL
    CELESTIAL MECHANICS, 1982, 28 (1-2): : 25 - 36
  • [28] Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem
    Nomikos, D. G.
    Papageorgiou, V. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 273 - 289
  • [29] THE PLANAR ISOSCELES PROBLEM FOR MANEFF GRAVITATIONAL LAW
    DIACU, FN
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) : 5671 - 5690
  • [30] Dynamics and Chaos in the Elliptic Isosceles Restricted Three-Body Problem with Collision
    Dias, Lucia Brandao
    Delgado, Joaquin
    Vidal, Claudio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 259 - 288