A Multivalued Approach to the Planar Isosceles Three Body Problem

被引:0
|
作者
Cristina Chiralt
Luis Marco
José Martínez-Alfaro
机构
[1] Universidad Jaume I,Departamento de Matemáticas
[2] Universitat de València,Departament de Matemàtica Aplicada
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Differential inclusions; Celestial mechanics; 34A60;
D O I
暂无
中图分类号
学科分类号
摘要
The isosceles three body problem consists of three point masses located on the vertices of an isosceles triangle on the plane. The two masses on the asymmetric edge are equal. This problem has been extensively studied but not as a perturbation of the Kepler problem. In this case we arrive at a differential inclusion as a natural formulation when we regularize the problem. We also derive an extension of the vectorfield that allows us to consider orbits across singular sets.
引用
收藏
页码:443 / 459
页数:16
相关论文
共 50 条
  • [1] A Multivalued Approach to the Planar Isosceles Three Body Problem
    Chiralt, Cristina
    Marco, Luis
    Martinez Alfaro, Jose
    SET-VALUED ANALYSIS, 2008, 16 (04): : 443 - 459
  • [2] Order and chaos in the planar isosceles three-body problem
    Zare, K
    Chesley, S
    CHAOS, 1998, 8 (02) : 475 - 494
  • [3] Periodic brake orbits in the planar isosceles three-body problem
    Chen, Nai-Chia
    NONLINEARITY, 2013, 26 (10) : 2875 - 2898
  • [4] Bifurcations in the mass ratio of the planar isosceles three-body problem
    Chesley, S
    Zare, K
    DYNAMICS OF SMALL BODIES IN THE SOLAR SYSTEM: A MAJOR KEY TO SOLAR SYSTEM STUDIES, 1999, 522 : 413 - 424
  • [5] TRIPLE COLLISION IN THE PLANAR ISOSCELES 3 BODY PROBLEM
    DEVANEY, RL
    INVENTIONES MATHEMATICAE, 1980, 60 (03) : 249 - 267
  • [6] The restricted planar isosceles three-body problem with non-negative energy
    Josep Maria Cors
    César Castilho
    Claudio Vidal
    Celestial Mechanics and Dynamical Astronomy, 2009, 103 : 163 - 177
  • [7] The restricted planar isosceles three-body problem with non-negative energy
    Cors, Josep Maria
    Castilho, Cesar
    Vidal, Claudio
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 103 (02): : 163 - 177
  • [8] Dynamics in the Schwarzschild Isosceles Three Body Problem
    John A. Arredondo
    Ernesto Pérez-Chavela
    Cristina Stoica
    Journal of Nonlinear Science, 2014, 24 : 997 - 1032
  • [9] Dynamics in the Schwarzschild Isosceles Three Body Problem
    Arredondo, John A.
    Perez-Chavela, Ernesto
    Stoica, Cristina
    JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (06) : 997 - 1032
  • [10] Minimal Geodesics of the Isosceles Three Body Problem
    Moeckel, Richard
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)