Barsotti–Tate groups and p-adic representations of the fundamental group scheme

被引:0
|
作者
Marco A. Garuti
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Pura ed Applicata
来源
Mathematische Annalen | 2008年 / 341卷
关键词
14L05; 14F20;
D O I
暂无
中图分类号
学科分类号
摘要
On a scheme S over a base scheme B we study the category of locally constant BT groups, i.e. groups over S that are twists, in the flat topology, of BT groups defined over B. These groups generalize p-adic local systems and can be interpreted as integral p-adic representations of the fundamental group scheme of S/B (classifying finite flat torsors on the base scheme) when such a group exists. We generalize to these coefficients the Katz correspondence for p-adic local systems and show that they are closely related to the maximal nilpotent quotient of the fundamental group scheme.
引用
收藏
页码:603 / 622
页数:19
相关论文
共 50 条