A new test for random events of an exponential distribution

被引:0
|
作者
K. H. Schmidt
机构
[1] Gesellschaft für Schwerionenforschung,
来源
关键词
02.50.-r Probability theory, stochastic processes, and statistics; 06.20.Dk Measurement and error theory; 23.90.+w Other topics in radioactive decay and in-beam spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
A new statistical test procedure is described to evaluate whether a set of radioactive-decay data is compatible with the assumption that these data originate from the decay of a single radioactive species. Criteria to detect contributions from other radioactive species and from different event sources are given. The test is applicable to samples of exponential distributions with two or more events.
引用
收藏
页码:141 / 145
页数:4
相关论文
共 50 条
  • [1] A new test for random events of an exponential distribution
    Schmidt, KH
    EUROPEAN PHYSICAL JOURNAL A, 2000, 8 (01): : 141 - 145
  • [2] Natural Test for Random Numbers Generator Based on Exponential Distribution
    Tanackov, Ilija
    Sinani, Feta
    Stankovic, Miomir
    Bogdanovic, Vuk
    Stevic, Zeljko
    Vidic, Mladen
    Mihaljev-Martinov, Jelena
    MATHEMATICS, 2019, 7 (10)
  • [3] Hypothesis Test of Parameter in Exponential Distribution
    Ruan, Shuping
    Jiang, Tao
    Cheng Wenfang
    2012 11TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING & SCIENCE (DCABES), 2012, : 470 - 472
  • [4] TEST OF INDEPENDENCE IN A BIVARIATE EXPONENTIAL DISTRIBUTION
    BHATTACHARYYA, GK
    JOHNSON, RA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (343) : 704 - 706
  • [5] RANDOM SAMPLING FROM THE EXPONENTIAL POWER DISTRIBUTION
    TADIKAMALLA, PR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (371) : 683 - 686
  • [6] On a test of independence in a multivariate exponential distribution
    Samanta, M
    Thavaneswaran, A
    QUALITY IMPROVEMENT THROUGH STATISTICAL METHODS, 1998, : 381 - 389
  • [7] Random growth networks with exponential degree distribution
    Ma, Fei
    Luo, Xudong
    Wang, Ping
    Zhu, Renbo
    CHAOS, 2020, 30 (11)
  • [8] Random fuzzy shock models and bivariate random fuzzy exponential distribution
    Liu, Ying
    Tang, Wansheng
    Li, Xiaozhong
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) : 2408 - 2418
  • [9] Transmuted Linear Exponential Distribution: A New Generalization of the Linear Exponential Distribution
    Tian, Yuzhu
    Tian, Maozai
    Zhu, Qianqian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (10) : 2661 - 2677
  • [10] The Dickey-Fuller test for exponential random walks
    Davies, PL
    Krämer, W
    ECONOMETRIC THEORY, 2003, 19 (05) : 865 - 877