Resolution of the Wavefront Set Using General Continuous Wavelet Transforms

被引:0
|
作者
Jonathan Fell
Hartmut Führ
Felix Voigtlaender
机构
[1] RWTH Aachen University,Lehrstuhl C für Mathematik (Analysis)
[2] RWTH Aachen University,Lehrstuhl A für Mathematik
来源
Journal of Fourier Analysis and Applications | 2016年 / 22卷
关键词
Wavefront set; Square-integrable group representation; Continuous wavelet transform; Anisotropic wavelet systems; Shearlets; 42C15; 42C40; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of characterizing the wavefront set of a tempered distribution u∈S′(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in \mathcal {S}'(\mathbb {R}^{d})$$\end{document} in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H⊂GL(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subset \mathrm{GL}(\mathbb {R}^{d})$$\end{document}. In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H, called microlocal admissibility and (weak) cone approximation property. Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in H$$\end{document} on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}—the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}) holds in arbitrary dimensions.
引用
收藏
页码:997 / 1058
页数:61
相关论文
共 50 条
  • [31] Tunable continuous wavelet and frame transforms
    Scholl, JF
    Barker, DL
    Schmitt, HA
    Langan, JD
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 922 - 933
  • [32] Fast Fourier and wavelet transforms for wavefront reconstruction in adaptive optics
    Dowla, FU
    Brase, JM
    Olivier, SS
    Thompson, CA
    HIGH-RESOLUTION WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS II, 2000, 4124 : 118 - 127
  • [33] GENERAL INVERSION FORMULAS FOR WAVELET TRANSFORMS
    HOLSCHNEIDER, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (09) : 4190 - 4198
  • [34] Characterization of polarization attributes of seismic waves using continuous wavelet transforms
    Diallo, Marnadou S.
    Kulesh, Michail
    Holschneider, Matthias
    Scherbaum, Frank
    Adler, Frank
    GEOPHYSICS, 2006, 71 (03) : V67 - V77
  • [35] Searching for periodic signals in kinematic distributions using continuous wavelet transforms
    Beauchesne, Hugues
    Kats, Yevgeny
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (03):
  • [36] A new potential field shape descriptor using continuous wavelet transforms
    Cavalier P.
    O'Hagan D.W.
    Geophysics, 2020, 85 (05): : G81 - G92
  • [37] Extracting Blade-Vortex Interactions Using Continuous Wavelet Transforms
    Stephenson, James H.
    Tinney, Charles E.
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2017, 62 (02)
  • [38] A new potential field shape descriptor using continuous wavelet transforms
    Cavalier, P.
    O'Hagan, D. W.
    GEOPHYSICS, 2020, 85 (05) : G81 - G92
  • [39] IDENTIFICATION ON SUDDEN DAMAGE OF BUILDING STRUCTURES BY USING CONTINUOUS WAVELET TRANSFORMS
    Wang, Jian-Ping
    Zheng, Jin
    Chen, Bo
    Sun, Su-Ming
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOL I AND II, 2010, : 1392 - 1397
  • [40] Searching for periodic signals in kinematic distributions using continuous wavelet transforms
    Hugues Beauchesne
    Yevgeny Kats
    The European Physical Journal C, 2020, 80