Resolution of the Wavefront Set Using General Continuous Wavelet Transforms

被引:0
|
作者
Jonathan Fell
Hartmut Führ
Felix Voigtlaender
机构
[1] RWTH Aachen University,Lehrstuhl C für Mathematik (Analysis)
[2] RWTH Aachen University,Lehrstuhl A für Mathematik
关键词
Wavefront set; Square-integrable group representation; Continuous wavelet transform; Anisotropic wavelet systems; Shearlets; 42C15; 42C40; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of characterizing the wavefront set of a tempered distribution u∈S′(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in \mathcal {S}'(\mathbb {R}^{d})$$\end{document} in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group H⊂GL(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subset \mathrm{GL}(\mathbb {R}^{d})$$\end{document}. In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H, called microlocal admissibility and (weak) cone approximation property. Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by h∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in H$$\end{document} on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}—the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}) holds in arbitrary dimensions.
引用
收藏
页码:997 / 1058
页数:61
相关论文
共 50 条
  • [1] Resolution of the Wavefront Set Using General Continuous Wavelet Transforms
    Fell, Jonathan
    Fuhr, Hartmut
    Voigtlaender, Felix
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (05) : 997 - 1058
  • [2] Resolution of the Wave Front Set using general Wavelet Transforms
    Fell, Jonathan
    Fuehr, Hartmut
    Voigtlaender, Felix
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 332 - 336
  • [3] RESOLUTION OF THE WAVEFRONT SET USING CONTINUOUS SHEARLETS
    Kutyniok, Gitta
    Labate, Demetrjo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2719 - 2754
  • [4] Continuous shearlet frames and resolution of the wavefront set
    Grohs, Philipp
    MONATSHEFTE FUR MATHEMATIK, 2011, 164 (04): : 393 - 426
  • [5] Continuous shearlet frames and resolution of the wavefront set
    Philipp Grohs
    Monatshefte für Mathematik, 2011, 164 : 393 - 426
  • [6] Signal Interpretation Using Continuous Wavelet Transforms
    Fernandez-Lavin, Alfonso
    Ovando-Shelley, Efrain
    GEOTECHNICAL ENGINEERING IN THE XXI CENTURY: LESSONS LEARNED AND FUTURE CHALLENGES, 2019, : 138 - 145
  • [7] Continuous wavelet transforms
    Shi, YH
    Ruan, QQ
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 207 - 210
  • [8] Continuous Curvelet Transform -: I.: Resolution of the wavefront set
    Candès, EJ
    Donoho, DL
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (02) : 162 - 197
  • [9] Modelling spatial density using continuous wavelet transforms
    D SUDHEER REDDY
    N GOPAL REDDY
    A K ANILKUMAR
    Sadhana, 2013, 38 : 109 - 121
  • [10] Modeling of Wave Dispersion Using Continuous Wavelet Transforms
    M. Kulesh
    M. Holschneider
    M. S. Diallo
    Q. Xie
    F. Scherbaum
    pure and applied geophysics, 2005, 162 : 843 - 855