Toroidal Schubert Varieties

被引:0
|
作者
Mahir Bilen Can
Reuven Hodges
Venkatramani Lakshmibai
机构
[1] Tulane University,
[2] The University of Illinois at Urbana-Champaign,undefined
[3] Northeastern University,undefined
来源
关键词
Toroidal Schubert varieties; Horospherical actions; Billey-Postnikov decomposition; 14M15; 14M27;
D O I
暂无
中图分类号
学科分类号
摘要
Levi subgroup actions on Schubert varieties are studied. In the case of partial flag varieties, the horospherical actions are determined. This leads to a characterization of the toroidal and horospherical partial flag varieties with Picard number 1. In the more general case, we provide a set of necessary conditions for the action of a Levi subgroup on a Schubert variety to be toroidal. The singular locus of a (co)minuscule Schubert variety is shown to contain all the Lmax-stable Schubert subvarieties, where Lmax is the standard Levi subgroup of the maximal parabolic which acts on the Schubert variety by left multiplication. In type A, the effect of the Billey-Postnikov decomposition on toroidal Schubert varieties is obtained.
引用
收藏
页码:1927 / 1943
页数:16
相关论文
共 50 条
  • [21] Toric degenerations of Schubert varieties
    Caldero P.
    Transformation Groups, 2002, 7 (1) : 51 - 60
  • [22] On tangent spaces to Schubert varieties
    Lakshmibai, V
    JOURNAL OF ALGEBRA, 2000, 230 (01) : 222 - 244
  • [23] On Tangent Cones of Schubert Varieties
    Fuchs D.
    Kirillov A.
    Morier-Genoud S.
    Ovsienko V.
    Arnold Mathematical Journal, 2017, 3 (4) : 451 - 482
  • [24] Geometric crystals on Schubert varieties
    Nakashima, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (02) : 197 - 225
  • [25] Elliptic classes of Schubert varieties
    Shrawan Kumar
    Richárd Rimányi
    Andrzej Weber
    Mathematische Annalen, 2020, 378 : 703 - 728
  • [26] UNIVERSAL GRAPH SCHUBERT VARIETIES
    BRENDAN PAWLOWSKI
    Transformation Groups, 2021, 26 : 1417 - 1461
  • [27] Schubert varieties and free braidedness
    Green, RM
    Losonczy, J
    TRANSFORMATION GROUPS, 2004, 9 (04) : 327 - 336
  • [28] Toric degenerations of Schubert varieties
    Caldero, P
    TRANSFORMATION GROUPS, 2002, 7 (01) : 51 - 60
  • [29] MULTICONES OVER SCHUBERT VARIETIES
    KEMPF, GR
    RAMANATHAN, A
    INVENTIONES MATHEMATICAE, 1987, 87 (02) : 353 - 363
  • [30] TANGENT SPACES TO SCHUBERT VARIETIES
    Lakshmibai, V.
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (04) : 473 - 477