(n+1)-dimensional Lorentzian wormholes in an expanding cosmological background

被引:0
|
作者
E. Ebrahimi
N. Riazi
机构
[1] Shiraz University,Department and Biruni Observatory
来源
关键词
Wormholes; Energy conditions; Expanding universe;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss (n+1)-dimensional dynamical wormholes in an evolving cosmological background with a throat expanding with time. These solutions are examined in the general relativity framework. A linear relation between diagonal elements of an anisotropic energy-momentum tensor is used to obtain the solutions. The energy-momentum tensor elements approach the vacuum case when we are far from the central object for one class of solutions. Finally, we discuss the energy-momentum tensor which supports this geometry, taking into account the energy conditions.
引用
收藏
页码:217 / 223
页数:6
相关论文
共 50 条
  • [31] On the physical nonlinear (n+1)-dimensional Schrodinger equation applications
    Abdelwahed, H. G.
    El-Shewy, E. K.
    Abdelrahman, Mahmoud A. E.
    Alsarhana, A. F.
    [J]. RESULTS IN PHYSICS, 2021, 21
  • [32] New Exact Solution of(N+1)-Dimensional Burgers System
    SHEN Shou-Feng~(1
    [J]. Communications in Theoretical Physics, 2005, 43 (03) : 389 - 390
  • [33] (N+1)-dimensional quantum mechanical model for a closed universe
    Mongan, TR
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (05) : 1521 - 1529
  • [34] LOCALIZED SOLUTIONS OF (N+1)-DIMENSIONAL EVOLUTION-EQUATIONS
    DEGASPERIS, A
    SABATIER, PC
    [J]. PHYSICS LETTERS A, 1990, 150 (8-9) : 380 - 384
  • [35] Charged (n+1)-dimensional Einstein-Maxwell systems
    Zanchin, VT
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (07): : 1525 - 1529
  • [36] Waves in cosmological background with static Schwarzschild radius in the expanding universe
    Yagdjian, Karen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [37] From (n+1)-level atom chains to n-dimensional noises
    Attal, S
    Pautrat, Y
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 391 - 407
  • [38] The inner derivation algebras of (n+1) - dimensional n-Lie algebras
    Bai, RP
    Zhang, ZX
    Li, HJ
    Shi, HF
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) : 2927 - 2934
  • [39] SO(n+1) Dynamical Symmetry of n-dimensional Hydrogen Atom
    钱裕昆
    曾谨言
    [J]. Science in China,Ser.A., 1993, Ser.A.1993 (05) - 601
  • [40] UNIVERSAL ASSOCIATIVE ENVELOPES OF (n+1)-DIMENSIONAL n-LIE ALGEBRAS
    Elgendy, Hader A.
    Bremner, Murray R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (05) : 1827 - 1842