Sharp profiles for periodic logistic equation with nonlocal dispersal

被引:0
|
作者
Jian-Wen Sun
机构
[1] Lanzhou University,School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems
关键词
Positive solution; Periodic profile; Nonlocal dispersal; 35B40; 35K57; 35P05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the nonlocal dispersal logistic equation ut=J∗u-u+λu-[b(x)q(t)+δ]upinΩ¯×(0,∞),u(x,t)=0inRN\Ω¯×(0,∞),u(x,t)=u(x,t+T)inΩ¯×[0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_t=J*u-u+\lambda u-[b(x)q(t)+\delta ]u^p &{}\text {in}\,\bar{\Omega }\times (0,\infty ),\\ u(x,t)=0 &{}\text {in}\,{\mathbb {R}^N\setminus \bar{\Omega }}\times (0,\infty ),\\ u(x,t)=u(x,t+T) &{}\text {in}\,\bar{\Omega }\times [0,\infty ), \end{array}\right. } \end{aligned}$$\end{document}here Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} is a bounded domain, J is a nonnegative dispersal kernel, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a fixed parameter and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. The coefficients b, q are nonnegative and continuous functions, and q is periodic in t. We are concerned with the asymptotic profiles of positive solutions as δ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \rightarrow 0$$\end{document}. We obtain that the temporal degeneracy of q does not make a change of profiles, but the spatial degeneracy of b makes a large change. We find that the sharp profiles are different from the classical reaction–diffusion equations. The investigation in this paper shows that the periodic profile has two different blow-up speeds and the sharp profile is time periodic in domain without spatial degeneracy.
引用
收藏
相关论文
共 50 条
  • [21] TIME PERIODIC TRAVELING WAVES FOR A PERIODIC NONLOCAL DISPERSAL MODEL WITH DELAY
    Wu, Shi-Liang
    Huang, Ming-di
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) : 4405 - 4421
  • [22] Positive solutions for a nonhomogeneous nonlocal logistic equation
    Sun, Jian-Wen
    Li, Jing-Yu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (02)
  • [23] A diffusive logistic equation with concentrated and nonlocal sources
    Caicedo, A.
    Cruz, F. W.
    Limeira, R.
    Viana, A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5975 - 5985
  • [24] Stable periodic configurations in nonlocal sharp interface models
    Acerbi, Emilio
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 191 - 204
  • [25] Propagation dynamics of an anisotropic nonlocal dispersal equation with delayed nonlocal response
    Zhang, Li
    Li, Wan-Tong
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [26] Propagation dynamics of an anisotropic nonlocal dispersal equation with delayed nonlocal response
    Zhang, Li
    Li, Wan-Tong
    Li, Wan-Tong (wtli@lzu.edu.cn), 1600, Elsevier Ltd (120):
  • [27] Almost periodic traveling waves for a nonlocal dispersal system
    Yang, Lu
    Li, Yongkun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [28] Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat
    Zhang, Guo-Bao
    Zhao, Xiao-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) : 2852 - 2885
  • [29] Periodic Traveling Waves in Integrodifferential Equations for Nonlocal Dispersal
    Sherratt, Jonathan A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (04): : 1517 - 1541
  • [30] Existence of positive periodic solutions for a periodic logistic equation
    Fan, GH
    Li, YK
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 139 (2-3) : 311 - 321