Sharp profiles for periodic logistic equation with nonlocal dispersal

被引:0
|
作者
Jian-Wen Sun
机构
[1] Lanzhou University,School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems
关键词
Positive solution; Periodic profile; Nonlocal dispersal; 35B40; 35K57; 35P05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the nonlocal dispersal logistic equation ut=J∗u-u+λu-[b(x)q(t)+δ]upinΩ¯×(0,∞),u(x,t)=0inRN\Ω¯×(0,∞),u(x,t)=u(x,t+T)inΩ¯×[0,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_t=J*u-u+\lambda u-[b(x)q(t)+\delta ]u^p &{}\text {in}\,\bar{\Omega }\times (0,\infty ),\\ u(x,t)=0 &{}\text {in}\,{\mathbb {R}^N\setminus \bar{\Omega }}\times (0,\infty ),\\ u(x,t)=u(x,t+T) &{}\text {in}\,\bar{\Omega }\times [0,\infty ), \end{array}\right. } \end{aligned}$$\end{document}here Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} is a bounded domain, J is a nonnegative dispersal kernel, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a fixed parameter and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. The coefficients b, q are nonnegative and continuous functions, and q is periodic in t. We are concerned with the asymptotic profiles of positive solutions as δ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \rightarrow 0$$\end{document}. We obtain that the temporal degeneracy of q does not make a change of profiles, but the spatial degeneracy of b makes a large change. We find that the sharp profiles are different from the classical reaction–diffusion equations. The investigation in this paper shows that the periodic profile has two different blow-up speeds and the sharp profile is time periodic in domain without spatial degeneracy.
引用
收藏
相关论文
共 50 条
  • [1] Sharp profiles for periodic logistic equation with nonlocal dispersal
    Sun, Jian-Wen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [2] The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation
    Sun, Jian-Wen
    Li, Wan-Tong
    Wang, Zhi-Cheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 934 - 971
  • [3] A NONLOCAL DISPERSAL LOGISTIC EQUATION WITH SPATIAL DEGENERACY
    Sun, Jian-Wen
    Li, Wan-Tong
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3217 - 3238
  • [4] Sharp profiles for diffusive logistic equation with spatial heterogeneity
    Xing, Yan-Hua
    Sun, Jian-Wen
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [5] Local diffusion vs. nonlocal dispersal in periodic logistic equations
    Sun, Jian-Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 354 : 67 - 89
  • [6] Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation
    Du, Yihong
    Peng, Rui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3794 - 3816
  • [7] Blow-up profiles for positive solutions of nonlocal dispersal equation
    Sun, Jian-Wen
    Li, Wan-Tong
    Yang, Fei-Ying
    APPLIED MATHEMATICS LETTERS, 2015, 42 : 59 - 63
  • [8] A LOGISTIC EQUATION WITH NONLOCAL INTERACTIONS
    Caffarelli, Luis
    Dipierro, Serena
    Valdinoci, Enrico
    KINETIC AND RELATED MODELS, 2017, 10 (01) : 141 - 170
  • [9] The effects of degeneracy on nonlocal dispersal logistic equations
    Sun, Jian-Wen
    You, Chunmei
    Qiao, Shao-Xia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [10] On the periodic logistic equation
    AlSharawi, Zlyad
    Angelos, James
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 342 - 352