On the electrical and charge conduction properties of thermally evaporated MoOx on n- and p-type crystalline silicon

被引:0
|
作者
Murat Gülnahar
Hisham Nasser
Arghavan Salimi
Raşit Turan
机构
[1] Erzincan Binali Yıldırım University,Department of Electricity and Energy, Vocational School
[2] Middle East Technical University (METU),The Center for Solar Energy and Applications (GUNAM)
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the electrical and charge conduction characteristics of a contact structure featuring thermally evaporated MoOx, deposited on n- and p-type crystalline silicon (c-Si), are extensively investigated by room temperature current–voltage (I–V), transmission line measurements (TLM), and temperature-dependent current–voltage measurements (I–V–T). XRD diffraction spectrum shows that the deposited MoOx film exhibits amorphous nature. From TLM measurements, the values of contact resistivity are calculated to be ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho_{\rm {c}}}$$\end{document}: 55.9 mΩ-cm2 for Ag/MoOx/n-Si and ρc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho_{\rm {c}}}$$\end{document}: 48.7 mΩ-cm2 for Ag/MoOx/p-Si. The barrier parameters such as barrier height (ϕe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{e}}}$$\end{document}) and ideality factor (n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}$$\end{document}) are investigated by the thermionic emission theory for I–V and I–V–T measurements. The ϕe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{e}}}$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}$$\end{document}, and conventional Richardson plot demonstrate resolute temperature dependency, obeying the barrier height of Gaussian distribution model. The uniform barrier height values are calculated to be ϕb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{b}}}$$\end{document}:1.24 eV for Ag/MoOx/n-Si and ϕb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{b}}}$$\end{document}:0.66 eV for Ag/MoOx/p-Si from the extrapolation of ϕe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{e}}}$$\end{document} at n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}$$\end{document}=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${=}$$\end{document} 1 of the linear fitting of the variation with the experimental barrier height ϕe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{e}}}$$\end{document} with ideality factor. The activation energy (Ea\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}_{\mathrm{a}}}$$\end{document}) and Richardson constant (A*), obtained from Richardson plot, are much smaller than ϕb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\phi }_{\mathrm{b}}}$$\end{document} and the theoretical values of n- and p-type c-Si. The modified Richardson plot yields more reliable Richardson constant and homogeneous barrier height values of 106.2 Acm−2 K−2 and 1.21 eV, 23.4 Acm−2 K−2 and 0.63 eV for Ag/MoOx/n-Si and Ag/MoOx/p-Si heterostructures, respectively. The results demonstrate that thermally evaporated MoOx has particular advantages due to its good rectifying characteristics such as the extra enhancement to barrier height and low contact resistivity for interfacial layer applications.
引用
收藏
页码:1092 / 1104
页数:12
相关论文
共 50 条
  • [31] The diffusion of antimony in heavily doped and n- and p-type silicon
    Fair, R. B.
    Manda, M. L.
    Wortman, J. J.
    JOURNAL OF MATERIALS RESEARCH, 1986, 1 (05) : 705 - 711
  • [32] Recombination in n- and p-type silicon emitters contaminated with iron
    Macdonald, Daniel
    Mackel, Helmut
    Cuevas, Andres
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 952 - 955
  • [33] Formation and thermoelectric properties of the n- and p-type silicon nanostructures with embedded GaSb nanocrystals
    Goroshko, Dmitrii L.
    Chusovitin, Evgeniy A.
    Subbotin, Evgeniy Y.
    Chusovitina, Svetlana V.
    Balagan, Semeyon A.
    Galkin, Konstantin N.
    Dotsenko, Sergey A.
    Gutakovskii, Anton K.
    Khovaylo, Vladimir V.
    Nazarov, Vladimir U.
    Galkin, Nikolay G.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59
  • [34] Electrical properties of n- and p-type doped epitaxial GaAs layers grown by OMVPE
    Modak, P
    Hudait, MK
    Hardikar, S
    Krupanidhi, SB
    PHYSICS OF SEMICONDUCTOR DEVICES, VOLS 1 AND 2, 1998, 3316 : 336 - 340
  • [35] RESISTIVITY OF N-TYPE AND P-TYPE CRYSTALLINE SILICON, DOPING DEPENDENCE
    PAWLIK, M
    IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1985, 132 (04): : 195 - 195
  • [36] CHARGE CARRIER PROPERTIES IN P-TYPE LAYERS OF SILICON ON SAPPHIRE
    ROUX, M
    BIELLEDASPET, D
    REVUE DE PHYSIQUE APPLIQUEE, 1981, 16 (09): : 497 - 508
  • [37] Space-charge layers and surface states in p-type crystalline silicon
    Ramírez-Porras, A
    Many, A
    Goldstein, Y
    Weisz, SZ
    SURFACE REVIEW AND LETTERS, 2002, 9 (5-6) : 1773 - 1777
  • [38] AMORPHOUS SILICON ON P-TYPE CRYSTALLINE SILICON HETEROJUNCTION
    ABOULSEOUD, AK
    MOKHTAR, O
    REVUE DE PHYSIQUE APPLIQUEE, 1978, 13 (12): : 641 - 644
  • [39] ELECTRICAL PROPERTIES OF GAMMA-IRRADIATED P-TYPE SILICON
    CHENG, LJ
    LORI, J
    PHYSICAL REVIEW B, 1970, 1 (04): : 1558 - &
  • [40] ELECTRICAL CONDUCTION IN P-TYPE TITANIUM SESQUIOXIDE
    YAHIA, J
    FREDERIKSE, HPR
    PHYSICAL REVIEW, 1961, 123 (04): : 1257 - +