Radius of Convergence of p-adic Connections and the p-adic Rolle Theorem

被引:0
|
作者
Francesco Baldassarri
机构
[1] Università di Padova,Dipartimento di Matematica
来源
关键词
Primary 12H25; Secondary 14G22; -adic connections; Berkovich curves;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the theory of the radius of convergence of a p-adic connection [2] to the special case of the direct image of the constant connection via a finite morphism of compact p-adic curves, smooth in the sense of rigid geometry. We detail in sections 1 and 2, how to obtain convergence estimates for the radii of convergence of analytic sections of such a finite morphism. In the case of an étale covering of curves with good reduction, we get a lower bound for that radius, corollary 3.3, and obtain, via corollary 3.7, a new geometric proof of a variant of the p-adic Rolle theorem of Robert and Berkovich, theorem 0.2. We take this opportunity to clarify the relation between the notion of radius of convergence used in [2] and the more intrinsic one used by Kedlaya [16, Def. 9.4.7.].
引用
收藏
页码:397 / 419
页数:22
相关论文
共 50 条
  • [41] Continuity of the radius of convergence of differential equations on p-adic analytic curves
    Francesco Baldassarri
    [J]. Inventiones mathematicae, 2010, 182 : 513 - 584
  • [42] p-adic origamis
    Herrlich, Frank
    [J]. RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES, 2014, 629 : 225 - 243
  • [43] P-ADIC DYNAMICS
    THIRAN, E
    VERSTEGEN, D
    WEYERS, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) : 893 - 913
  • [44] The p-Adic Analytic Subgroup Theorem Revisited
    Fuchs, C.
    Pham, D. H.
    [J]. P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2015, 7 (02) : 143 - 156
  • [45] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [46] P-ADIC DIFFERENTIABILITY
    WEISMAN, CS
    [J]. JOURNAL OF NUMBER THEORY, 1977, 9 (01) : 79 - 86
  • [47] p-adic Cohomology
    Kedlaya, Kiran S.
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [48] THE P-ADIC SPECTRUM
    ROBINSON, E
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1986, 40 (03) : 281 - 296
  • [49] P-ADIC CONVEXITIES
    JAMISON, RE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A272 - A272
  • [50] ON P-ADIC MONODROMY
    STIENSTRA, J
    VANDERPUT, M
    VANDERMAREL, B
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (02) : 309 - 325