q-polymatroids and their relation to rank-metric codes

被引:0
|
作者
Heide Gluesing-Luerssen
Benjamin Jany
机构
[1] University of Kentucky,Department of Mathematics
来源
关键词
Rank-metric codes; -matroids; -polymatroids; Representability;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that linear rank-metric codes give rise to q-polymatroids. Analogously to matroid theory, one may ask whether a given q-polymatroid is representable by a rank-metric code. We provide an answer by presenting an example of a q-matroid that is not representable by any linear rank-metric code and, via a relation to paving matroids, provide examples of various q-matroids that are not representable by Fqm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^m}$$\end{document}-linear rank-metric codes. We then go on and introduce deletion and contraction for q-polymatroids and show that they are mutually dual and correspond to puncturing and shortening of rank-metric codes. Finally, we introduce a closure operator along with the notion of flats and show that the generalized rank weights of a rank-metric code are fully determined by the flats of the associated q-polymatroid.
引用
收藏
页码:725 / 753
页数:28
相关论文
共 50 条
  • [31] Weighted Subspace Designs from q-Polymatroids
    Byrne, Eimear
    Ceria, Michela
    Ionica, Sorina
    Jurrius, Relinde
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 201
  • [32] Optimal Ferrers diagram rank-metric codes from MRD codes
    Shuangqing Liu
    Designs, Codes and Cryptography, 2023, 91 : 3977 - 3993
  • [33] Constructions for Optimal Ferrers Diagram Rank-Metric Codes
    Liu, Shuangqing
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4115 - 4130
  • [34] RANK-METRIC CODES, SEMIFIELDS, AND THE AVERAGE CRITICAL PROBLEM
    Gruica, A. N. I. N. A.
    Ravagnani, A. L. B. E. R. T. O.
    Sheekey, J. O. H. N.
    Zullo, F. E. R. D. I. N. A. N. D. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1079 - 1117
  • [35] Higher-Degree Symmetric Rank-Metric Codes
    Bik, Arthur
    Neri, Alessandro
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (04) : 931 - 967
  • [36] Space-Time Codes Based on Rank-Metric Codes and Their Decoding
    Puchinger, Sven
    Stern, Sebastian
    Bossert, Martin
    Fischer, Robert F. H.
    2016 13TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2016, : 125 - 130
  • [37] Optimal Ferrers diagram rank-metric codes from MRD codes
    Liu, Shuangqing
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (12) : 3977 - 3993
  • [38] Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes
    Morrison, Katherine
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7035 - 7046
  • [39] Rank-Metric Codes, Generalized Binomial Moments and their Zeta Functions
    Byrne, Eimear
    Cotardo, Giuseppe
    Ravagnani, Alberto
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 92 - 128
  • [40] On the List-Decodability of Random Linear Rank-Metric Codes
    Guruswami, Venkatesan
    Resch, Nicolas
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1505 - 1509