Representations of reductive groups distinguished by symmetric subgroups

被引:0
|
作者
Itay Glazer
机构
[1] Weizmann Institute of Science,Faculty of Mathematics and Computer Science
来源
Mathematische Zeitschrift | 2018年 / 289卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a complex connected reductive group, Gθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\theta }$$\end{document} be its fixed point subgroup under a Galois involution θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and H be an open subgroup of Gθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\theta }$$\end{document}. We show that any H-distinguished representation π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} satisfies:πθ≃π~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\theta }\simeq \tilde{\pi }$$\end{document}, where π~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\pi }$$\end{document} is the contragredient representation and πθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\theta }$$\end{document} is the twist of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} under θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.dimCπ∗H≤B\G/H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {dim}_{\mathbb {C}}\left( \pi ^{*}\right) ^{H}\le \left| B\backslash G/H\right| $$\end{document}, where B is a Borel subgroup of G. By proving the first statement, we give a partial answer to a conjecture by Prasad and Lapid.
引用
收藏
页码:471 / 489
页数:18
相关论文
共 50 条
  • [31] On irreducible generic representations distinguished by orthogonal groups
    Valverde, Cesar
    JOURNAL OF NUMBER THEORY, 2015, 157 : 280 - 290
  • [32] MODULAR-REPRESENTATIONS OF REDUCTIVE GROUPS
    JANTZEN, JC
    LECTURE NOTES IN MATHEMATICS, 1986, 1185 : 118 - 154
  • [33] Polarizations and Nullcone of Representations of Reductive Groups
    Kraft, Hanspeter
    Wallach, Nolan R.
    SYMMETRY AND SPACES: IN HONOR OF GERRY SCHWARZ, 2010, 278 : 153 - +
  • [34] UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS
    Adams, Jeffrey D.
    van Leeuwen, Marc A. A.
    Trapa, Peter E.
    Vogan, David A., Jr.
    ASTERISQUE, 2020, (417) : V - +
  • [35] SPINORIALITY OF ORTHOGONAL REPRESENTATIONS OF REDUCTIVE GROUPS
    Joshi, Rohit
    Spallone, Steven
    REPRESENTATION THEORY, 2020, 24 : 435 - 469
  • [36] The Steinberg variety and representations of reductive groups
    Douglass, J. Matthew
    Roehrle, Gerhard
    JOURNAL OF ALGEBRA, 2009, 321 (11) : 3158 - 3196
  • [37] REPRESENTATIONS OF REDUCTIVE GROUPS IN COHOMOLOGY SPACES
    BRION, M
    MATHEMATISCHE ANNALEN, 1994, 300 (04) : 589 - 604
  • [38] ON THE REPRESENTATIONS OF REDUCTIVE GROUPS WITH DISCONNECTED CENTER
    LUSZTIG, G
    ASTERISQUE, 1988, (168) : 157 - 166
  • [39] Cohomological representations for real reductive groups
    Nair, Arvind N.
    Prasad, Dipendra
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (04): : 1515 - 1571
  • [40] Parabolic subgroups and representations of branch groups
    Bartholdi, L
    Grigorchuk, RI
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09): : 789 - 794