On Bounding the Difference of the Maximum Degree and the Clique Number

被引:0
|
作者
Oliver Schaudt
Vera Weil
机构
[1] Université Pierre et Marie Curie,Institut für Informatik
[2] Combinatoire et Optimisation,undefined
[3] Universität zu Köln,undefined
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Maximum clique; Maximum degree; Structural characterization of families of graphs; Coloring of graphs;
D O I
暂无
中图分类号
学科分类号
摘要
For every k∈N0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in {\mathbb {N}}_0$$\end{document}, we consider graphs in which for any induced subgraph, Δ≤ω-1+k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \le \omega - 1 + k$$\end{document} holds, where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the maximum degree and ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is the maximum clique number of the subgraph. We give a finite forbidden induced subgraph characterization for every k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. As an application, we find some results on the chromatic number χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of a graph. B. Reed stated the conjecture that for every graph, χ≤⌈Δ+ω+12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \le \lceil \frac{\Delta + \omega + 1 }{2}\rceil $$\end{document} holds. Since this inequality is fulfilled by graphs in which Δ≤ω+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \le \omega + 2$$\end{document} holds, our results provide a hereditary graph class for which the conjecture holds.
引用
收藏
页码:1689 / 1702
页数:13
相关论文
共 50 条