Analysis of the velocity relationship and deceleration of long-rod penetration

被引:0
|
作者
W. J. Jiao
X. W. Chen
机构
[1] University of Science and Technology of China,Department of Modern Mechanics
[2] China Academy of Engineering Physics,Institute of Systems Engineering
[3] Beijing Institute of Technology,The State Key Lab of Explosion Science and Technology
[4] Beijing Institute of Technology,Advanced Research Institute of Multidisciplinary Science
来源
Acta Mechanica Sinica | 2019年 / 35卷
关键词
Long-rod penetration; Average penetration velocity; Initial impact velocity; Alekseevskii–Tate model; Deceleration;
D O I
暂无
中图分类号
学科分类号
摘要
The relationship between the average penetration velocity, U¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{U} $$\end{document}, and the initial impact velocity, V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{ 0} $$\end{document}, in long-rod penetration has been studied recently. Experimental and simulation results all show a linear relationship between U¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{U} $$\end{document} and V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{ 0} $$\end{document} over a wide range of V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{ 0} $$\end{document} for different combinations of rod and target materials. However, the physical essence has not been fully revealed. In this paper, the U¯-V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{U} - V_{ 0} $$\end{document} relationship is comprehensively analyzed using the hydrodynamic model and the Alekseevskii–Tate model. In particular, the explicit U¯-V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{U} - V_{ 0} $$\end{document} relationships are derived from approximate solutions of the Alekseevskii–Tate model. In addition, the deceleration in long-rod penetration is discussed. The deceleration degree is quantified by a deceleration index, α=2μ¯/(KΦJp)≈Ypρp-1/2ρp-1/2+ρt-1/2V0-2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha = {{2\bar{\mu }} \mathord{\left/ {\vphantom {{2\bar{\mu }} {(K\varPhi_{Jp} )}}} \right. \kern-0pt} {(K\varPhi_{Jp} )}} \approx Y_{p} \rho_{p}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \left( {\rho_{p}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} + \rho_{t}^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} } \right)V_{0}^{ - 2} , $$\end{document} which is mainly related to the impact velocity, rod strength, and rod/target densities. Thus, the state of the penetration process can be identified and designed in experiments.
引用
收藏
页码:852 / 865
页数:13
相关论文
共 50 条
  • [31] Extensions to the exact solution of the long-rod penetration/erosion equations
    Segletes, SB
    Walters, WP
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2003, 28 (04) : 363 - 376
  • [32] Lateral confinement effects in long-rod penetration of ceramics at hypervelocity
    Chocron, I. S.
    Anderson, C. E., Jr.
    Behner, T.
    Hohler, V.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2006, 33 (1-12) : 169 - 179
  • [33] A unified model for long-rod penetration in multiple metallic plates
    Chocron, S
    Anderson, CE
    Walker, JD
    Ravid, M
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2003, 28 (04) : 391 - 411
  • [35] Approximate solutions of the Alekseevskii–Tate model of long-rod penetration
    W.J.Jiao
    X.W.Chen
    Acta Mechanica Sinica, 2018, (02) : 334 - 348
  • [36] Model for long-rod penetration into semi-infinite targets
    Zhang, Lian-Sheng
    Huang, Feng-Lei
    Journal of Beijing Institute of Technology (English Edition), 2004, 13 (03): : 285 - 289
  • [37] Approximate solutions of the Alekseevskii–Tate model of long-rod penetration
    W. J. Jiao
    X. W. Chen
    Acta Mechanica Sinica, 2018, 34 : 334 - 348
  • [38] Experimental Study on High Velocity Penetration Resistance of Steel Fibre Reinforced Concrete by Long-rod Projectile
    Zhao, Xiaoning
    He, Yong
    Chen, Huiwu
    Jin, Mingchang
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND MECHANICS, VOLS 1 AND 2, 2009, : 856 - 859
  • [39] Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile
    Tan M.
    Zhang X.
    Ge X.
    Liu C.
    Xiong W.
    Zhang, Xianfeng (lynx@njust.edu.cn), 2017, Explosion and Shock Waves (37): : 1093 - 1100
  • [40] Hypervelocity penetration of concrete targets with long-rod steel projectiles: experimental and theoretical analysis
    Lu, Yangyu
    Zhang, Qingming
    Xue, Yijiang
    Guo, Xianghua
    Shang, Cheng
    Liu, Wenjin
    Ren, Siyuan
    Long, Renrong
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 148