Evaluating the Multiple Offspring Sampling framework on complex continuous optimization functions

被引:0
|
作者
Antonio LaTorre
Santiago Muelas
José-María Peña
机构
[1] Universidad Politécnica de Madrid,Department of Computer Systems Architecture and Technology, Facultad de Informática
[2] Consejo Superior de Investigaciones Científicas (CSIC),Instituto Cajal
来源
Memetic Computing | 2013年 / 5卷
关键词
Hybridization; Multiple Offspring Sampling; Evolution Strategies; IPOP-CMA-ES; Differential Evolution; Benchmarking; Continuous optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution we present a study on the combination of Differential Evolution and the IPOP-CMA-ES algorithms. The hybrid algorithm has been constructed by using the Multiple Offspring Sampling framework, which allows the seamless combination of multiple metaheuristics in a dynamic algorithm capable of adjusting the participation of each of the composing algorithms according to their current performance. In this study we analyze the existing synergies, if any, emerging from the combination of the two algorithms. For this purpose, the COCO suite used in BBOB 2009 and 2010 Workshops has been used. The experimental results on the noiseless testbed show a robust behavior of the algorithm and a good scalability as the dimensionality increases. In the noisy testbed, the algorithm shows a good performance on functions with moderate to severe noise.
引用
收藏
页码:295 / 309
页数:14
相关论文
共 50 条
  • [21] A framework for optimization using approximate functions
    Won, KS
    Ray, T
    Tai, K
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1520 - 1527
  • [22] Adaptive multiple importance sampling for general functions
    Sbert, Mateu
    Havran, Vlastimil
    VISUAL COMPUTER, 2017, 33 (6-8): : 845 - 855
  • [23] Adaptive multiple importance sampling for general functions
    Mateu Sbert
    Vlastimil Havran
    The Visual Computer, 2017, 33 : 845 - 855
  • [24] Evaluating the association between placenta DNA methylation and cognitive functions in the offspring
    Diez-Ahijado, Laia
    Cilleros-Portet, Ariadna
    Fernandez-Jimenez, Nora
    Fernandez, Mariana F.
    Guxens, Monica
    Julvez, Jordi
    Llop, Sabrina
    Lopez-Espinosa, Maria-Jose
    Subiza-Perez, Mikel
    Lozano, Manuel
    Ibarluzea, Jesus
    Sunyer, Jordi
    Bustamante, Mariona
    Cosin-Tomas, Marta
    TRANSLATIONAL PSYCHIATRY, 2024, 14 (01):
  • [25] Optimization-based path planning framework for industrial manufacturing processes with complex continuous paths
    Weingartshofer, Thomas
    Bischof, Bernhard
    Meiringer, Martin
    Hartl-Nesic, Christian
    Kugi, Andreas
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 82
  • [26] SamACO: Variable Sampling Ant Colony Optimization Algorithm for Continuous Optimization
    Hu, Xiao-Min
    Zhang, Jun
    Chung, Henry Shu-Hung
    Li, Yun
    Liu, Ou
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (06): : 1555 - 1566
  • [27] A new framework for developing and evaluating complex interventions
    Moore, Laurence
    Skivington, Kathryn
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2021, 31
  • [28] Multiple-goal objective functions for optimization of task assignment in complex computer systems
    Marlowe, TJ
    Stoyenko, AD
    Laplante, PA
    Daita, RS
    Amaro, CC
    Nguyen, CM
    Howell, SL
    CONTROL ENGINEERING PRACTICE, 1996, 4 (02) : 251 - 256
  • [29] Adaptive optimization for multiple continuous queries
    Park, Hong Kyu
    Lee, Won Suk
    DATA & KNOWLEDGE ENGINEERING, 2012, 71 (01) : 29 - 46
  • [30] A note on multiple imputation under complex sampling
    Kim, J. K.
    Yang, S.
    BIOMETRIKA, 2017, 104 (01) : 221 - 228