Equations of motion and conserved quantities in non-Abelian discrete integrable models

被引:0
|
作者
V. A. Verbus
A. P. Protogenov
机构
[1] RAS,Institute for Physics of Microstructures
[2] RAS,Institute for Applied Physics
来源
关键词
Continuous Limit; Discrete Equation; Hirota Equation; Lipan; Liouville Model;
D O I
暂无
中图分类号
学科分类号
摘要
Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to Ak−1 algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseiko equation are obtained.
引用
收藏
页码:420 / 430
页数:10
相关论文
共 50 条
  • [31] Non-Abelian discrete gauge symmetries in 4d string models
    M. Berasaluce-González
    P. G. Cámara
    F. Marchesano
    D. Regalado
    A. M. Uranga
    Journal of High Energy Physics, 2012
  • [32] Non-Abelian Discrete Symmetries in Particle Physics
    Ishimori, Hajime
    Kobayashi, Tatsuo
    Ohki, Hiroshi
    Shimizu, Yusuke
    Okada, Hiroshi
    Tanimoto, Morimitsu
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2010, (183): : 1 - 163
  • [33] Cross rules and non-Abelian lattice equations for the discrete and confluent non-scalar ε-algorithms
    Brezinski, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (20)
  • [34] Non-Abelian discrete flavor symmetries from magnetized/intersecting brane models
    Abe, Hiroyuki
    Choi, Kang-Sin
    Kobayashi, Tatsuo
    Ohki, Hiroshi
    NUCLEAR PHYSICS B, 2009, 820 (1-2) : 317 - 333
  • [35] Non-abelian discrete gauge symmetries and inflation
    Cohn, JD
    Stewart, ED
    PHYSICS LETTERS B, 2000, 475 (3-4) : 231 - 235
  • [36] How to find the conserved quantities of nonlinear discrete equations
    Hirota, R
    Kimura, K
    Yahagi, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10377 - 10386
  • [37] Non-Abelian Kuramoto models and synchronization
    Lohe, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
  • [38] NON-ABELIAN DISCRETE FLAVOR SYMMETRIES ON ORBIFOLDS
    Abe, Hiroyuki
    Choi, Kang-Sin
    Kobayashi, Tatsuo
    Ohki, Hiroshi
    Sakai, Manabu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (23): : 4067 - 4082
  • [39] On the non-abelian superalgebra spanned by the conserved quantities of N=1 supersymmetric Korteweg-de Vries equation
    Andrea, S.
    Restuccia, A.
    Sotomayor, A.
    PHYSICS LETTERS A, 2012, 376 (04) : 245 - 251
  • [40] On non-Abelian duality in sigma models
    Mohammedi, N
    PHYSICS LETTERS B, 1996, 375 (1-4) : 149 - 153