Equations of motion and conserved quantities in non-Abelian discrete integrable models

被引:0
|
作者
V. A. Verbus
A. P. Protogenov
机构
[1] RAS,Institute for Physics of Microstructures
[2] RAS,Institute for Applied Physics
来源
关键词
Continuous Limit; Discrete Equation; Hirota Equation; Lipan; Liouville Model;
D O I
暂无
中图分类号
学科分类号
摘要
Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to Ak−1 algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseiko equation are obtained.
引用
收藏
页码:420 / 430
页数:10
相关论文
共 50 条
  • [1] Equations of motion and conserved quantities in non-Abelian discrete integrable models
    Verbus, VA
    Protogenov, AP
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 119 (01) : 420 - 430
  • [2] Conserved quantities in non-Abelian monopole fields
    Horvathy, P. A.
    Ngome, J. -P.
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [3] CONSERVED QUANTITIES FOR THE GEODESIC MOTION ON THE CONFIGURATION SPACE OF NON-ABELIAN YANG-MILLS THEORY
    BABELON, O
    VIALLET, CM
    PHYSICS LETTERS B, 1981, 103 (01) : 45 - 47
  • [4] CONSERVED QUANTITIES OF THE INTEGRABLE DISCRETE HUNGRY SYSTEMS
    Kakizaki, Sonomi
    Fukuda, Akiko
    Yamamoto, Yusaku
    Iwasaki, Masashi
    Ishiwata, Emiko
    Nakamura, Yoshimasa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (05): : 889 - 899
  • [5] Asymptotically free models and discrete non-Abelian groups
    Caracciolo, S
    Montanari, A
    Pelissetto, A
    PHYSICS LETTERS B, 2001, 513 (1-2) : 223 - 231
  • [6] Quantum superalgebras at roots of unity and non-Abelian symmetries of integrable models
    Korff, C
    Roditi, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (24): : 5115 - 5137
  • [7] Non-Abelian discrete R symmetries
    Chen, Mu-Chun
    Ratz, Michael
    Trautner, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [8] Non-Abelian discrete symmetry for flavors
    Ishimori, Hajime
    Kobayashi, Tatsuo
    Shimizu, Yusuke
    Ohki, Hiroshi
    Okada, Hiroshi
    Tanimoto, Morimitsu
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (4-5): : 441 - 465
  • [9] Non-Abelian discrete R symmetries
    Mu-Chun Chen
    Michael Ratz
    Andreas Trautner
    Journal of High Energy Physics, 2013
  • [10] Non-Abelian discrete dark matter
    Adulpravitchai, Adisorn
    Batell, Brian
    Pradler, Josef
    PHYSICS LETTERS B, 2011, 700 (3-4) : 207 - 216