Bohmian Chaos in Multinodal Bound States

被引:0
|
作者
Athanasios C. Tzemos
George Contopoulos
机构
[1] Research Center for Astronomy and Applied Mathematics of the Academy of Athens,
来源
Foundations of Physics | 2022年 / 52卷
关键词
Chaos; Bohmian mechanics; Quantum potential;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Bohmian trajectories in a 2-d quantum harmonic oscillator with non commensurable frequencies whose wavefunction is of the form Ψ=aΨm1,n1(x,y)+bΨm2,n2(x,y)+cΨm3,n3(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi =a\Psi _{m_1,n_1}(x,y)+b\Psi _{m_2,n_2}(x,y)+c\Psi _{m_3,n_3}(x,y)$$\end{document}. We first find the trajectories of the nodal points for different combinations of the quantum numbers m, n. Then we study, in detail, a case with relatively large quantum numbers and two equal m′s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m's$$\end{document}. We find (1) fixed nodes independent of time and (2) moving nodes which from time to time collide with the fixed nodes and at particular times they go to infinity. Finally, we study the trajectories of quantum particles close to the nodal points and observe, for the first time, how chaos is generated in a complex system with multiple nodes scattered on the configuration space.
引用
收藏
相关论文
共 50 条
  • [21] Chaos and ergodicity in entangled non-ideal Bohmian qubits
    Tzemos, A. C.
    Contopoulos, G.
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [22] Examination of experimental evidence of chaos in the bound states of 208Pb
    Munoz, L.
    Molina, R. A.
    Gomez, J. M. G.
    Heusler, A.
    PHYSICAL REVIEW C, 2017, 95 (01):
  • [23] Chaos in Bohmian quantum mechanics (vol 39, pg 1819, 2006)
    Efthymiopoulos, C.
    Contopoulos, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26): : 8563 - 8563
  • [24] Bohmian quantum trajectories from coherent states
    Dey, Sanjib
    Fring, Andreas
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [25] An inelastic bound on chaos
    Gustavo J. Turiaci
    Journal of High Energy Physics, 2019
  • [26] An inelastic bound on chaos
    Turiaci, Gustavo J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (07)
  • [27] Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?
    Nicolas Gisin
    Erkenntnis, 2021, 86 : 1469 - 1481
  • [29] Bound on energy dependence of chaos
    Hashimoto, Koji
    Murata, Keiju
    Tanahashi, Norihiro
    Watanabe, Ryota
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [30] Instantons and the quantum bound to chaos
    Sadhasivam, Vijay Ganesh
    Meuser, Lars
    Reichman, David R.
    Althorpe, Stuart C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (49)