Bohmian Chaos in Multinodal Bound States

被引:0
|
作者
Athanasios C. Tzemos
George Contopoulos
机构
[1] Research Center for Astronomy and Applied Mathematics of the Academy of Athens,
来源
Foundations of Physics | 2022年 / 52卷
关键词
Chaos; Bohmian mechanics; Quantum potential;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Bohmian trajectories in a 2-d quantum harmonic oscillator with non commensurable frequencies whose wavefunction is of the form Ψ=aΨm1,n1(x,y)+bΨm2,n2(x,y)+cΨm3,n3(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi =a\Psi _{m_1,n_1}(x,y)+b\Psi _{m_2,n_2}(x,y)+c\Psi _{m_3,n_3}(x,y)$$\end{document}. We first find the trajectories of the nodal points for different combinations of the quantum numbers m, n. Then we study, in detail, a case with relatively large quantum numbers and two equal m′s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m's$$\end{document}. We find (1) fixed nodes independent of time and (2) moving nodes which from time to time collide with the fixed nodes and at particular times they go to infinity. Finally, we study the trajectories of quantum particles close to the nodal points and observe, for the first time, how chaos is generated in a complex system with multiple nodes scattered on the configuration space.
引用
收藏
相关论文
共 50 条
  • [1] Bohmian Chaos in Multinodal Bound States
    Tzemos, Athanasios C.
    Contopoulos, George
    FOUNDATIONS OF PHYSICS, 2022, 52 (04)
  • [2] Bohmian insights into quantum chaos
    Cushing, JT
    PHILOSOPHY OF SCIENCE, 2000, 67 (03) : S430 - S445
  • [3] Absence of chaos in Bohmian dynamics
    Goldstein, S
    PHYSICAL REVIEW E, 1999, 60 (06): : 7578 - 7579
  • [4] Chaos in Bohmian quantum mechanics
    Efthymiopoulos, C
    Contopoulos, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (08): : 1819 - 1852
  • [5] Bohmian quantum potential and chaos
    Tzemos, A. C.
    Contopoulos, G.
    CHAOS SOLITONS & FRACTALS, 2022, 160
  • [6] Motion of vortices implies chaos in Bohmian mechanics
    Wisniacki, DA
    Pujals, ER
    EUROPHYSICS LETTERS, 2005, 71 (02): : 159 - 165
  • [7] CHAOS IN BOHMIAN MECHANICS OF COMMENSURATE HARMONIC OSCILLATORS
    Umair, H.
    Hishamuddin, Z.
    INTERNATIONAL CONFERENCE ON QUANTUM OPTICS AND QUANTUM INFORMATION (ICQOQI) 2013, 2014, 553
  • [8] Chaos in Bohmian Quantum Mechanics: A Short Review
    Contopoulos, George
    Tzemos, Athanasios C.
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (05): : 476 - 495
  • [9] Chaos in Bohmian Quantum Mechanics: A Short Review
    George Contopoulos
    Athanasios C. Tzemos
    Regular and Chaotic Dynamics, 2020, 25 : 476 - 495
  • [10] A comparison between classical and Bohmian quantum chaos
    Tzemos, A. C.
    Contopoulos, G.
    CHAOS SOLITONS & FRACTALS, 2024, 188