Modal Deduction in Second-Order Logic and Set Theory - II

被引:4
|
作者
Van Benthem J. [1 ]
D'Agostino G. [2 ]
Montanari A. [1 ]
Policriti A. [2 ]
机构
[1] ILLC, Universiteit Van Amsterdam, Plantage Muidergracht 24
[2] Dipaitimento di Malematica E Lufuriualica, Università di Udine, Via delle Scienze 206
关键词
Modal Deduction; Modal Logic; Second-Order Logic; Set theory; Translation Methods;
D O I
10.1023/A:1005037512998
中图分类号
学科分类号
摘要
In this paper, we generalize the set-theoretic translation method for polymodal logic introduced in [11] to extended modal logics. Instead of devising an ad-hoc translation for each logic, we develop a general framework within which a number of extended modal logics can be dealt with. We first extend the basic set-theoretic translation method to weak monadic second-order logic through a suitable change in the underlying set theory that connects up in interesting ways with constructibility; then, we show how to tailor such a translation to work with specific cases of extended modal logics. © 1998 Kluwer Academic Publishers.
引用
收藏
页码:387 / 420
页数:33
相关论文
共 50 条
  • [21] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2009, 5514 : 230 - 241
  • [22] Team Logic and Second-Order Logic
    Kontinen, Juha
    Nurmi, Ville
    [J]. FUNDAMENTA INFORMATICAE, 2011, 106 (2-4) : 259 - 272
  • [23] EXACT FORMULA FOR THE SECOND-ORDER TANGENT SET OF THE SECOND-ORDER CONE COMPLEMENTARITY SET
    Chen, Jein-Shan
    Ye, Jane J.
    Zhang, Jin
    Zhou, Jinchuan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2986 - 3011
  • [24] A Defense of Second-Order Logic
    Otávio Bueno
    [J]. Axiomathes, 2010, 20 : 365 - 383
  • [25] A Defense of Second-Order Logic
    Bueno, Otavio
    [J]. AXIOMATHES, 2010, 20 (2-3): : 365 - 383
  • [26] Second-Order Logic of Paradox
    Hazen, Allen P.
    Pelletier, Francis Jeffry
    [J]. NOTRE DAME JOURNAL OF FORMAL LOGIC, 2018, 59 (04) : 547 - 558
  • [27] SECOND-ORDER INTENSIONAL LOGIC
    CRESSWELL, MJ
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1972, 18 (04): : 297 - 320
  • [28] MODEL THEORY ON A POSITIVE SECOND-ORDER LOGIC WITH COUNTABLE CONJUNCTIONS AND DISJUNCTIONS
    MOTOHASH.N
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (01) : 27 - 42
  • [29] A Modal-tense Sortal Logic with Variable-Domain Second-order Quantification
    Freund, Max A.
    [J]. AUSTRALASIAN JOURNAL OF LOGIC, 2015, 12 (01) : 67 - 96
  • [30] Rudimentary languages and second-order logic
    More, M
    Olive, F
    [J]. MATHEMATICAL LOGIC QUARTERLY, 1997, 43 (03) : 419 - 426