Computing Interior Eigenvalues of Large Sparse Symmetric Matrices

被引:0
|
作者
Dax A. [1 ]
机构
[1] Hydrological Service, P.O.B. 36118, Jerusalem
关键词
Computing interior eigenvalues; Large sparse symmetric matrices; Monotonicity; Restarted Krylov methods; Semi-compact Heart iteration;
D O I
10.1007/s40819-021-01170-8
中图分类号
学科分类号
摘要
In this paper we present new restarted Krylov methods for calculating interior eigenvalues of large sparse symmetric matrices. The proposed methods are compact versions of the Heart iteration which are modified to retain the monotonicity property. Numerical experiments illustrate the usefulness of the proposed approach. © 2021, The Author(s).
引用
收藏
相关论文
共 50 条
  • [41] Efficient computation of the exponential operator for large, sparse, symmetric matrices
    Bergamaschi, L
    Vianello, M
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2000, 7 (01) : 27 - 45
  • [42] COMPUTING EIGENVALUES OF LARGE SCALE SPARSE TENSORS ARISING FROM A HYPERGRAPH
    Chang, Jingya
    Chen, Yannan
    Qi, Liqun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3618 - A3643
  • [43] Eigenvalues of Large Matrices
    ZHAO Yumin Department of Physics Shanghai Jiaotong University Shanghai China Center of Theoretical Nuclear Physics National Laboratory of Heavy Ion Research Facility in Lanzhou Lanzhou China
    原子核物理评论, 2009, 26(S1) (S1) : 165 - 167
  • [44] On the concentration of eigenvalues of random symmetric matrices
    Noga Alon
    Michael Krivelevich
    Van H. Vu
    Israel Journal of Mathematics, 2002, 131 : 259 - 267
  • [45] THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES
    FUREDI, Z
    KOMLOS, J
    COMBINATORICA, 1981, 1 (03) : 233 - 241
  • [46] Real symmetric matrices with partitioned eigenvalues
    Weinstein, Madeleine
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 : 281 - 289
  • [47] Real symmetric matrices and their negative eigenvalues
    Mohammadian, Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 640 : 6 - 11
  • [48] COMPUTING LARGE SPARSE JACOBIAN MATRICES USING AUTOMATIC DIFFERENTIATION
    AVERICK, BM
    MORE, JJ
    BISCHOF, CH
    CARLE, A
    GRIEWANK, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02): : 285 - 294
  • [49] Eigenvalues bounds for symmetric interval matrices
    Singh, Sukhjit
    Gupta, D. K.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (04) : 311 - 322
  • [50] Bounds for the extreme eigenvalues of symmetric matrices
    Huang, TZ
    Xu, CX
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (03): : 214 - 216