Calderón–Zygmund Operators and Commutators on Weighted Lorentz Spaces

被引:0
|
作者
María J. Carro
Hongliang Li
Javier Soria
Qinxiu Sun
机构
[1] Complutense University of Madrid,Department of Analysis and Applied Mathematics
[2] Zhejiang International Studies University,Department of Mathematics
[3] Complutense University of Madrid,Interdisciplinary Mathematics Institute (IMI), Department of Analysis and Applied Mathematics
[4] Zhejiang University of Science and Technology,Department of Mathematics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Calderón–Zygmund operators; Commutators; Weighted Lorentz spaces; 46E30; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
We find necessary conditions (which are also sufficient, for some particular cases) for a pair of weights u and w such that a Calderón–Zygmund operator T, or its commutator [b, T], with b∈BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in \mathrm{BMO}$$\end{document}, is bounded on the weighted Lorentz spaces Λup(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _{u}^{p}{(w)}$$\end{document}, for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}. This result completes the study already known for the Hardy–Littlewood maximal operator and the Hilbert transform, and hence unifies the weighted theories for the Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} and Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} classes.
引用
收藏
页码:8979 / 8990
页数:11
相关论文
共 50 条
  • [41] New weighted norm inequalities for multilinear Calderón–Zygmund operators with kernels of Dini’s type and their commutators
    Yichun Zhao
    Jiang Zhou
    Journal of Inequalities and Applications, 2021
  • [42] Weighted norm inequalities for multilinear Calderón-Zygmund operators in generalized Morrey spaces
    Panwang Wang
    Zongguang Liu
    Journal of Inequalities and Applications, 2017
  • [43] SOME ENDPOINT ESTIMATES FOR COMMUTATORS OF θ-TYPE CALDERóN-ZYGMUND OPERATORS
    Xiaoli Chen Department of Mathematics Jiangxi Normal University NJiangxi
    Analysis in Theory and Applications, 2009, 25 (02) : 175 - 181
  • [44] Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces
    Chol Ri
    Zhenqiu Zhang
    Chinese Annals of Mathematics, Series B, 2019, 40 : 585 - 598
  • [45] Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces
    Chol RI
    Zhenqiu ZHANG
    Chinese Annals of Mathematics,Series B, 2019, (04) : 585 - 598
  • [46] Calderón–Zygmund Operators on Homogeneous Product Lipschitz Spaces
    Taotao Zheng
    Jiecheng Chen
    Jiawei Dai
    Shaoyong He
    Xiangxing Tao
    The Journal of Geometric Analysis, 2021, 31 : 2033 - 2057
  • [47] Multilinear Commutators of θ-Type Calderón-Zygmund Operators on Non-Homogeneous Metric Measure Spaces
    Rulong Xie
    Lisheng Shu
    Hailian Wang
    AnalysisinTheoryandApplications, 2017, 33 (02) : 178 - 196
  • [48] Algebras of Calderón–Zygmund Operators on Spaces of Homogeneous Type
    Fanghui Liao
    Yan Wang
    Zhengyang Li
    The Journal of Geometric Analysis, 2022, 32
  • [49] The boundedness of multilinear Calderón–Zygmund operators on Hardy spaces
    JIZHENG HUANG
    YU LIU
    Proceedings - Mathematical Sciences, 2013, 123 : 383 - 392
  • [50] Algebras of Calderón-Zygmund Operators on RD Spaces
    Wang, Dandan
    Fang, Qiquan
    Tao, Xiangxing
    Zheng, Taotao
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, 45 (02) : 83 - 102