A mass transportation approach for Sobolev inequalities in variable exponent spaces

被引:0
|
作者
Juan Pablo Borthagaray
Julián Fernández Bonder
Analía Silva
机构
[1] FCEyN - Universidad de Buenos Aires,IMAS
[2] Ciudad Universitaria, CONICET and Departamento de Matemática
[3] Universidad Nacional de San Luis,IMASL
来源
manuscripta mathematica | 2016年 / 151卷
关键词
46E35; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a proof of the Sobolev–Poincaré inequality for variable exponent spaces by means of mass transportation methods, in the spirit of Cordero-Erausquin et al. (Adv Math 182(2):307–332, 2004). The importance of this approach is that the method is flexible enough to deal with different inequalities. As an application, we also deduce the Sobolev-trace inequality improving the result of Fan (J Math Anal Appl 339(2):1395–1412, 2008) by obtaining an explicit dependence of the exponent in the constant.
引用
收藏
页码:133 / 146
页数:13
相关论文
共 50 条
  • [21] Poincaré and Sobolev Inequalities for Vector Fields Satisfying Hrmander's Condition in Variable Exponent Sobolev Spaces
    Xia LI
    Guo Zhen LU
    Han Li TANG
    Acta Mathematica Sinica,English Series, 2015, (07) : 1067 - 1085
  • [22] On Lewy-Stampacchia Inequalities for a Pseudomonotone Elliptic Bilateral Problem in Variable Exponent Sobolev Spaces
    Mokrane, A.
    Tahraoui, Y.
    Vallet, G.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [23] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1201 - 1217
  • [24] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Yoshihiro Mizuta
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2023, 73 : 1201 - 1217
  • [25] ON A NONLINEAR EIGENVALUE PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Dinu, T-L
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 208 - 217
  • [26] ON A NONHOMOGENOUS QUASILINEAR PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Ben Ali, Khaled
    Bezzarga, Mounir
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 21 - +
  • [27] Continuity of Sobolev functions of variable exponent on metric spaces
    Mizuta, Y
    Shimomura, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (06) : 96 - 99
  • [28] Weighted Sobolev theorem in Lebesgue spaces with variable exponent
    Samko, N. G.
    Samko, S. G.
    Vakulov, B. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 560 - 583
  • [29] Geometric rigidity on Sobolev spaces with variable exponent and applications
    Almi, Stefano
    Caponi, Maicol
    Friedrich, Manuel
    Solombrino, Francesco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (01):
  • [30] Hölder Quasicontinuity in Variable Exponent Sobolev Spaces
    Petteri Harjulehto
    Juha Kinnunen
    Katja Tuhkanen
    Journal of Inequalities and Applications, 2007