A mass transportation approach for Sobolev inequalities in variable exponent spaces

被引:0
|
作者
Juan Pablo Borthagaray
Julián Fernández Bonder
Analía Silva
机构
[1] FCEyN - Universidad de Buenos Aires,IMAS
[2] Ciudad Universitaria, CONICET and Departamento de Matemática
[3] Universidad Nacional de San Luis,IMASL
来源
manuscripta mathematica | 2016年 / 151卷
关键词
46E35; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a proof of the Sobolev–Poincaré inequality for variable exponent spaces by means of mass transportation methods, in the spirit of Cordero-Erausquin et al. (Adv Math 182(2):307–332, 2004). The importance of this approach is that the method is flexible enough to deal with different inequalities. As an application, we also deduce the Sobolev-trace inequality improving the result of Fan (J Math Anal Appl 339(2):1395–1412, 2008) by obtaining an explicit dependence of the exponent in the constant.
引用
收藏
页码:133 / 146
页数:13
相关论文
共 50 条
  • [1] A mass transportation approach for Sobolev inequalities in variable exponent spaces
    Pablo Borthagaray, Juan
    Fernandez Bonder, Julian
    Silva, Analia
    MANUSCRIPTA MATHEMATICA, 2016, 151 (1-2) : 133 - 146
  • [2] Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent
    Bennouna J.
    El hamdaoui B.
    Mekkour M.
    Redwane H.
    Ricerche di Matematica, 2016, 65 (1) : 93 - 125
  • [3] Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces
    Zang, Aibin
    Fu, Yong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3629 - 3636
  • [4] ON THE WEIGHTED RELLICH-SOBOLEV AND HARDY-SOBOLEV INEQUALITIES IN VARIABLE EXPONENT LEBESGUE SPACES
    Edmunds, David
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (01) : 155 - 159
  • [5] Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
    Ohno, Takao
    Shimomura, Tetsu
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 189 - 204
  • [6] Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
    Takao Ohno
    Tetsu Shimomura
    Ricerche di Matematica, 2022, 71 : 189 - 204
  • [7] Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces
    Edmunds, David E.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) : 2174 - 2188
  • [8] Poincar, and Sobolev Inequalities for Vector Fields Satisfying Hormander's Condition in Variable Exponent Sobolev Spaces
    Li, Xia
    Lu, Guo Zhen
    Tang, Han Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (07) : 1067 - 1085
  • [9] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [10] A Gamma convergence approach to the critical Sobolev embedding in variable exponent spaces
    Fernandez Bonder, Julian
    Saintier, Nicolas
    Silva, Analia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (01) : 189 - 205